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Very rough lecture notes; please direct corrections to markfhagen@posteo.net if you have
them. There are already many good expository treatments of this topic, so it's unlikely to
get tidied up too much more, but the hope is that it is useful in the following two ways:
there is a lightly-annotated list of references in the last section, and the penultimate section
contains exercises. There are also a few exercises in the notes themselves (some of which
duplicate the ones at the end).

1. RAAGs

1.1. Reminders about residual �niteness.

De�nition 1.1 (Separable, residually �nite). A subset S of a group G is separable if for all
g P G ´ S, there exists G1 ď G with rG : G1s ă 8 and S Ă G1 and g R G1. An important
special case: if t1u is separable, then G is residually �nite �

Exercise 1.2. If G is �nitely presented and residually �nite, it has solvable word problem.

De�nition 1.3. G is linear over the �eld F if there is an embedding GÑ GLnpF q for some
n. We say G is Z�linear if there is an embedding GÑ SLnpZq for some n. �
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Exercise 1.4. If G is virtually linear (resp. Z�linear) then it is linear (resp. Z�linear).
Theorem 1.5 (Mal'cev, 1940). Finitely generated linear groups are residually �nite.

Exercise 1.6. Prove directly from the de�nition: SLnpZq is residually �nite.

Problem 1.7 (Gromov 1987). Find a hyperbolic group G that is not residually �nite.

Non-linear hyperbolic groups are known [Kap05], some of which are de�nitely residually
�nite [TT22], but there seem to be relatively few examples.

Consider the presentations
Γ “ xx, y | rrx, ys, ysxy

and
xa, b, t | tat´1 “ ab, tbt´1 “ bay.

Exercise 1.8. Show that these de�ne the same group.

The �rst presentation makes Γ one-relator group. The second shows that Γ is the mapping
torus of the (non-surjective) injective endomorphism φ : F pa, bq Ñ F pa, bq given by φpaq “
ab, φpbq “ ba. There are various ways to see (e.g. [Kap00]):

Lemma 1.9. Γ is hyperbolic.

Druµu-Sapir [DS04] asked:

Question 1.10. Is Γ linear?

Sapir observed1 that if Γ is linear (over, say, C), then we have invertible matrices x, y
satisfying rrx, ys, ys “ x´1. There was some evidence that this should force xn to be a
unipotent matrix for some n ą 0. This in turns yields a non-cyclic nilpotent subgroup,
contradicting Lemma 1.9. But it turns out that Γ is linear. In fact, the only known answer
to �Sapir's linear algebra question� (no, x need not have a unipotent power)2 is via virtually
embedding Γ in a RAAG.

1.2. RAAGs and RACGs.

De�nition 1.11 (Graph product, RAAG, RACG). Let Γ “ pV pΓq, EpΓqq be a simplicial
(no loops, no bigons) undirected graph. For each v P V pΓq, let Gv be a (�nitely generated)
group. The graph product GpΓq is

GpΓq “ ˚vPV pΓqGv{xxtrgv, gws : tv, wu P EpΓq, gv P Gv, gw P Gwuyy.

When each Gv – Z{2, denote GpΓq by W pΓq; this is called a right-angled Coxeter group.
When each Gv – Z, denote GpΓq by ApΓq; this is a right-angled Artin group. �

Theorem 1.12 (Linearity of RAAGs). Let Γ be a �nite simplicial graph. Then

‚ W pΓq is linear (in fact Z�linear).
‚ There exists a �nite simplicial graph Λ with the property that ApΓq embeds in W pΛq
([DJ00, HW99, Gre90]).

Hence ApΓq is (Z�)linear and thus residually �nite.

Sketch. Let V pΓq “ tv1, . . . , vnu. De�ne a bilinear form on Rn by

xei, ejy “

#

1 if tvi, vju R EpΓq,

0 otherwise,

where e1, . . . , en are the standard basis vectors. For each vi, let fpviq P EndpRnq be
fpviqpxq “ x´ 2xx, eiy ¨ ei.

1https://mathoverflow.net/questions/44737/invertible-matrices-satisfying-x-y-y-x
2As far as I know...

https://mathoverflow.net/questions/44737/invertible-matrices-satisfying-x-y-y-x
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Exercise 1.13. Show that the fpviq de�ned as above determine a unique homomorphism
f : W pΓq Ñ EndpRnq with image in SLnpZq. Show (or read about it in, for instance, [Cas])
that f is injective.

Now for the embedding of ApΓq in a Coxeter group. De�ne a graph Λ as follows. For
1 ď i ď n, let v`i , v

´
i be vertices, and form edges by joining v˘i to v˘j and v¯j if and only

if tvi, vju P V pΓq. De�ne i : ApΓq Ñ W pΛq by ipviq “ v´i v
`
i . This induces a unique

homomorphism. Injectivity is explained in [HW99] but it is also not too hard to see using
cube complex stu� discussed shortly. �

De�nition 1.14 ((Virtually) special group, �rst de�nition). G is (virtually) special if (there
is a �nite index subgroup of) G that embeds in ApΓq for some Γ. �

From now on, unless stated otherwise, we restrict to �nitely generated groups � if G is
�nitely generated, then we can insist on a �nite Γ in the previous de�nition without a�ecting
anything. So, (�nitely generated) virtually special groups are Z�linear and residually �nite.

Now return to our discussion of separability:

Exercise 1.15 (Separability facts). Fix a group G, a �nite-index subgroup G1, some H ď G,
and let H 1 “ G1 XH. Then:

(1) If H 1 is separable in G1, then H is separable in G.
(2) If G is residually �nite and there is a retraction r : G Ñ G onto H, then H is

separable in G.

Hence, if H ď G and H XG1 is a retract of G1 for some �nite index G1, then H is separable
in G. (It is useful to prove this sort of thing once in your life from the de�nitions, and then
go read about the pro�nite topology in the enumerated exercises at the end of the notes.)

Corollary 1.16. Let Λ Ă Γ be an induced subgraph, and let i : ApΛq Ñ ApΓq be the
homomorphism induced by the inclusion Λ Ñ Γ. Then i is injective, and its image is separable
in ApΓq.

Proof. Exercise; consider the map r : ApΓq Ñ ApΛq given by rpvq “ v for v P Λ and rpvq “ 1
otherwise. �

There are non-separable subgroups of RAAGs, as �rst observed in [Mih66]:

Example 1.17. Let F “ xa, b | Hy and F 1 “ xc, d | Hy and let A “ F ˆ F 1, which
is ApΓq where Γ is a 4�cycle. Let Q be a 2�generated group that is not residually �nite.
Many Baumslag-Solitar groups give nice examples [Mes72]. So we have quotient maps f :
F Ñ Q, f 1 : F 1 Ñ Q1 where Q1 is a copy of Q. Let i : Q Ñ Q1 be the isomorphism
given by fpaq ÞÑ f 1pcq, fpbq ÞÑ f 1pdq. Let ∆ Ă Q ˆ Q1 be ∆ “ tpx, ipxqq : x P Qu. Let
H “ pf ˆ f 1q´1p∆q.

Fix Q “ xa, b | ba2b´1a´3y and Q1 the same but with a replaced by c and b by d. Then H
is generated by pa, cq, pb, dq and pba2b´1a´3, 1q and p1, dc2d´1c´3q, so it is �nitely generated.
One the other hand, H is not separable; see exercises at the end. �

Much of the importance of separability comes from its geometric/topological interpreta-
tion, observed by Scott [Sco78]; here is a geometric version of the statement, which I prefer:

Theorem 1.18 (Separability, geometric viewpoint). Let rX be a connected graph and let G

act (metrically) properly on rX. Let H ď G stabilise a connected subgraph rY Ă rX, with H

acting coboundedly on rY . Then the following are equivalent:

(1) H is separable in G.
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(2) For all r ă 8 there exists G1 ďfi G such that H ď G1 and d
rX
prY , grY q ą r for all

g P G1 ´H.

This could be stated a bit more generally but conveys the point.

Proof. Fix y0 P rY and C ă 8 such that rY Ď
Ť

hPH NCph ¨ y0q.
Assume thatH is separable and let r ă 8 be arbitrary. Let S “ tg P G´H : d

rX
py0, gy0q ď

10pr `Cqu. Then |S| ă 8 since G acts on rX properly. Use separability to choose G1r ďfi G

such that H ď G1r and SXG1r “ H. Suppose that g P G1r and d
rX
pgrY , rY q ď r. Then for some

a, b P H, we have d
rX
pga ¨ y0, b ¨ y0q ď r ` 2C, so b´1ga P S or b´1ga P H. Now, b´1ga P G1r

since a, b P H and g P G1r; this is a contradiction unless b´1ga P H, and hence g P H.
Conversely, assume that for each r we have a G1 with the second enumerated property.

Let g P G ´H. Let r “ d
rX
py0, gy0q ` 1 and let S be de�ned as above for the given r. Let

G1 ďfi G contain H and have the property that every a P G1 ´H moves rY a distance more
than r. Then d

rX
pay0, y0q ą r, so g R G1, as required to prove separability. �

Here is a useful special case. Let X be a connected CW complex based at a vertex v and let
G “ π1pX, vq. Let pY, yq be a based CW complex with Y p1q �nite, and let f : pY, yq Ñ pX, vq
be a continuous based map such that f˚ : π1pY, yq Ñ G is injective. Let H “ impf˚q.

Let rX Ñ X be the universal cover and let rY Ñ Y be the universal cover, and choose

basepoints ṽ P rX, ỹ P rY mapping to v, y respectively under the covering maps.

Let f̃ : prY , ỹq Ñ p rX, ṽq lift f ; we abuse notation and denote its image by rY , which we

regard as a subcomplex of rX. Up to conjugation, H ď StabGprY q, and Y “ HzrY .

So, G acts freely by isometries on rXp1q, and H stabilises, coboundedly, the subgraph rY p1q.

As long as Xp1q is �nite, then G acts metrically properly (since rX is locally compact in this

case). Note that rYC :“ NCprY q is H�cobounded for all C ă 8. Let YC “ HzrYC , so we have
a π1�injective map YC Ñ X extending f and inducing the inclusion of H into G.

Now, by the theorem, the following are equivalent:

‚ H is separable in G, and
‚ for all C, there exists G1 ďfi G such that H ď G1 and YC X gYC “ H for g P G1´H.

The second condition can be rephrased as follows. Let XC “ G1z rX, so that the covering

map rX Ñ X “ Gz rX factors as rX Ñ XC Ñ X, where the second arrow is a �nite-sheeted

cover. Moreover, the inclusion rYC Ñ rX descends to an injective map YC Ñ XC , and there
is a commutative diagram:

.

XC

YC X
��/�

??

//

So, YC embeds in a �nite cover of X; this is the point of separability (for our purposes).

Remark 1.19. Major motivation came from 3�manifolds: for instance, the virtual Haken
problem for hyperbolic 3�manifolds asked, given a closed, oriented, hyperbolic 3�manifold
M , for a �nite cover M̂ Ñ M containing an embedded π1�injective closed surface. This is
achieved (once one has surface subgroups, itself already a huge deal) by showing that the
relevant subgroups of π1M are separable, and this is in turn achieved by showing that π1M
is virtually special. More about this later. �

Next, we will discuss the combinatorial/topological viewpoint on virtual specialness, using
cube complexes. We will show how it interacts well with the geometric characterisation
of separability, and why it is equivalent to virtually embedding an a RAAG. Then we will
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discuss the recipe for proving virtual specialness, and how it relates to examples like Sapir's
question.

2. Cube complexes, specialness, and finite covers

2.1. Cube complexes.

De�nition 2.1 (Cube (as a metric CW complex)). For n ě 0, an n�cube is de�ned induc-
tively as follows. A 0�cube is a 0�cell, and a 1�cube is a 1�cell. For n ě 1, an n�cube is the
CW complex obtained by equipping the product of n 1�cubes with the product cell structure.
Identifying each 1�cube c with r´1

2 ,
1
2 s makes the n�cube cn a metric space by equipping it

with the `p metric, for 1 ď p ď 8. The most commonly-used values of p are 1, 2,8. �

De�nition 2.2 (Face, cube complex). If c “ r´1
2 ,

1
2 s
n is an n�cube, a face f of c is a

subspace obtained by restricting some coordinates to `1
2 or ´1

2 . The face f is naturally

isometric (and isomorphic as a CW complex) to r´1
2 ,

1
2 s
k, where k ď n is the number of

unrestricted coordinates. The inclusion f ãÑ c is a combinatorial map, and an isometric
embedding in any of the above metrics `1, `2, `8.

A cube complex is a CW complex X whose cells are cubes, with the property that for each
n�cube c, the attaching map BcÑ Xpn´1q restricts on each proper face of c to a combinatorial
isometry to some cube of Xpn´1q. �

De�nition 2.3 (Link, induced map, nonpositively curved, CAT(0)). For each vertex v P X,
let Lkpvq be the simplex complex de�ned as follows.

Let i ě 0 and let c be an pi ` 1q�cube with attaching map Bc Ñ Xpiq. For each p P Bc
mapping to v, there is an i�simplex σpc, pq in Lkpvq. We view σpc, pq as the 1

3�ball in the `1
metric on c centred at the corner p.

The attaching maps de�ne an equivalence relation on the disjoint union of all the σpc, pq,
and the quotient is a CW complex (made of simplices) called the link Lkpvq of v.

We say that X is nonpositively curved if Lkpvq is a simplicial complex (each simplex is

uniquely determined by its 0�skeleton) and moreover a �ag complex for all v P Xp0q. (This
means: if x0, . . . , xn are pairwise-adjacent vertices in Lkpvq, then they span an n�simplex.)

If f : X Ñ Y is a combinatorial map of cube complexes, then for each 0�cube v P X, there
is a natural combinatorial map fv : LkXpvq Ñ LkY pfpvqq, since each pi ` 1q�cube incident
to v in X is sent to an pi` 1q�cube in Y incident to fpvq.

If X is simply connected and nonpositively-curved, it is a CAT(0) cube complex. �

Remark 2.4 (Metrics). If X is a CAT(0) cube complex, then regarding each cube as a unit
cube with the `p metric equips X with a length metric dp in the usual way.

(1) When X is �nite-dimensional (i.e. X “ Xpnq for some n), d2 is a CAT(0) metric
inducing the CW topology [Bri91]; even if X is in�nite-dimensional, d2 is still a
CAT(0) metric, although now the metric and CW topologies are only homotopy
equivalent instead of homeomorphic [Lea13]. A useful consequence is that CAT(0)
cube complexes are contractible. (One can also prove this using the other metrics,
too.)

(2) The metric d1 is a median metric (see e.g. [Mie14]), and restricts on the 0�skeleton to

the graph metric on Xp1q. The 1�skeleton is a median graph and uniquely determines
X [Che00].

(3) When X is �nite-dimensional, d8 and d1 and d2 are all bilipschitz equivalent. Combi-
natorial automorphisms are isometries of all three metrics. d8 is an injective metric.

We aren't going to do much geometry on CAT(0) cube complexes. The median viewpoint
is the most used to date for this sort of purpose, although the `8 viewpoint is increasingly
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important. So the name �CAT(0) cube complex� is perhaps a bit misleading. However, it is
the case that if the piecewise�`2 metric on a simply connected cube complex is CAT(0), then
it satis�es the link condition. �

De�nition 2.5. Let X be a cube complex. An automorphism is a continuous bijection
f : X Ñ X such that f sends 0�cubes to 0�cubes and open cubes homeomorphically to open
cubes (necessarily of the same dimension). If X is CAT(0), automorphisms are isometries of
all the above metrics, and group actions on X are always by automorphisms. �

We will mostly work with compact nonpositively curved cube complexes.

Example 2.6.
(1) Each graph Γ is a cube complex of dimension at most 1. CAT(0) cube complexes of

dimension at most 1 are precisely trees.
(2) Let Γ be a �nite simplicial graph, and let ApΓq be the associated RAAG. The Salvetti

complex XpΓq is the cube complex that has one 0�cube, a 1�cube v for each v P V pΓq,
and an n�cube spanned by the 1�cubes v1, . . . , vn if and only if v1, . . . , vn are pairwise-
adjacent in Γ.

Exercise 2.7. Show that XpΓq is nonpositively curved and that π1XpΓq – ApΓq. �

2.2. Hyperplanes. These are the answer to �why cubes?�.

De�nition 2.8 (Hyperplane). Let c – r´1
2 ,

1
2 s
n for n ě 1. A (closed) midcube of c is

a subspace (isometric to r´1
2 ,

1
2 s
n´1) obtained by restricting exactly one coordinate to 0.

Let X be a cube complex. For each cube c and each midcube m of c, consider the map
m ãÑ c Ñ X, where the second arrow is the characteristic map. If f is a face of c and n
is a midcube of f such that f ãÑ c restricts to an inclusion n ãÑ m, then write n ă m.
Form a cube complex Hyp whose cubes are all of the midcubes, where m,m1 are attached by
identifying n ă m with n ă m1 via the identity nÑ n whenever such an n exists. The maps
mÑ X induce a map HypÑ X. A component h of Hyp is called an immersed hyperplane
of X, and we have a map hÑ X that is an embedding on each open cube of h (open cubes
get sent to open midcubes isometrically).

If hÑ X is an embedding, we call h a hyperplane (i.e. we drop �immersed�). �

Each 1�cube of X intersects exactly one immersed hyperplane, namely the immersed
hyperplane h containing the midpoint of the 1�cube; h and the 1�cube are dual. Collected
useful facts about hyperplanes (see e.g. [Sag95, Che00, Wis21, Hag22]):

Theorem 2.9. Let X be a connected nonpositively curved cube complex, and let rX Ñ X

be the universal cover (so, rX is a CAT(0) cube complex). Let h Ñ X be an immersed

hyperplane, and let rhÑ h be the universal cover. Then:

(1) rhÑ hÑ X lifts to an embedding rhÑ rX, and rh is a hyperplane of rX.

(2) rh intersects each cube c of rX either in H or in a midcube of c.

(3) rh is geodesically convex in rX with both the d1 and d2 metrics.

(4) rX ´ rh has exactly two components, the halfspaces associated to rh. We denote these
rh`,rh´. We say that x, y P rX are separated by rh if x P rh˘ and y P rh¯.

(5) If v, w P rXp0q, then d1pv, wq is the cardinality of the set of hyperplanes separating
v, w. And d8pv, wq is the maximal possible cardinality of a set of pairwise-disjoint
hyperplanes separating v, w.

(6) Let Nprhq be the union of all closed cubes of rX that contribute midcubes to rh. Then

there is a cubical isomorphism rhˆr´1
2 ,

1
2 s Ñ Nprhq sending rhˆt0u to rh via px, 0q ÞÑ x.

The subcomplexes rhˆ t˘1
2u are convex and called combinatorial hyperplanes.
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(7) If rh is a hyperplane, then rh˘ Y Nprhq is a convex (in all metrics) subcomplex of rX
called a combinatorial halfspace.

Let h Ñ X be a hyperplane, and let G “ π1X act on rX by deck transformations. Let
H “ impπ1h Ñ Gq (imagine we chose basepoints), so that H stabilises an appropriately

chosen lift rh Ă rX of rhÑ hÑ X.
First, the theorem implies π1h Ñ G is injective π1h – H. The covering map rh Ñ h

is therefore the quotient by the H�action, and the original map h Ñ X is just the map

Hzrh Ñ Gz rX induced by rh ãÑ rX. Let Nphq “ HzNprhq; the complex Nphq may not have
a product structure, although it is an interval bundle over h, since H might permute the
two halfspaces associated to h. But we do have a cubical map Nphq Ñ X which is again

π1�injective (and Nphq is homotopy equivalent to h). We call Nprhq the carrier of rh and
Nphq the (immersed) carrier of h.

2.3. Local isometries.

De�nition 2.10. Let X,Y be cube complexes. The combinatorial map f : Y Ñ X is locally
injective if fv : Lkpvq Ñ Lkpfpvqq is injective for all v. The locally injective map f is a local

isometry if for all v P X and all x0, . . . , xn P Lkpvqp0q such that the fvpxiq span a simplex e
in Lkpfpvqq, there is a simplex e1 in Lkpvq spanned by the xi and fvpe

1q “ e. �

Example 2.11. Covering maps of nonpositively curved cube complexes are local isometries.
A big part of the point of specialness is that it will enable us to start with a local isometry
Y Ñ X and add stu� to Y to get a covering map, without having to add too much... �

Lemma 2.12. Let f : Y Ñ X be a local isometry of (connected, to avoid basepoints) cube

complexes. If X is nonpositively-curved, so is Y . In this case, rY Ñ Y
f
ÝÑ X lifts to an

embedding rY Ñ rX with convex image (in d1 and d2 sense), and in particular f is π1�injective.

Exercise 2.13. Prove Lemma 2.12. Suggestions:

‚ Lifting criterion gives the lift f̃ : rY Ñ rX; check it's a local isometry.

‚ Injectivity of f̃ : consider a combinatorial geodesic γ in rY that is embedded but has
the property that f̃ ˝γ is a closed path. Use the part of Theorem 2.9 about separation

to �nd two distinct edges e, e1 of f̃ ˝ γ that are dual to the same hyperplane of rX.
Choose the e, e1 to be a �smallest� counterexample in an appropriate sense, and derive
a contradiction using that f̃ is an isometry.

‚ Convex image: verify that any x P rXp0q´f̃prY q is separated from f̃prY q by a hyperplane
and use Theorem 2.9.

2.4. Specialness.

De�nition 2.14 (Specialness, extrinsic de�nition). The [compact] cube complex X is [com-
pact] special if there exists a Salvetti complex XpΓq and a local isometry X Ñ XpΓq. The
[compact] cube complex X is virtually [compact] special if it has a �nite-sheeted cover with
this property.

The group G is [compact] special if G “ π1X for X a [compact] special cube complex.
The group G is virtually ([compact] special) if there exists a �nite-index G1 ď G with G1

[compact] special. �

Remark 2.15. The group G being virtually compact special is a weaker property than
asking that G “ π1X where X is virtually compact special.

We insisted our RAAGs are �nitely generated, but it's �ne to allow XpΓq with Γ in�nite,
everything will work, and it's more natural from the next point of view. With this more
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expansive de�nition, one can say nice things like: CAT(0) cube complexes are all special,
but not in general compact special, and not via local isometries to XpΓq with Γ �nite. �

Proposition 2.16. Suppose that X is a connected3 special cube complex. Suppose that hÑ
X and w Ñ X are hyperplanes. Then:

‚ hÑ X is an embedding.
‚ Nphq – hˆ r´1

2 ,
1
2 s.

‚ If g P π1X has the property that gNprhq ‰ Nprhq but gNprhq X Nprhq ‰ H, then the

halfspaces associated to rh can be labeled so that grh` Ă rh`.
‚ If h and w cross (i.e. there exist edges e, f of X that are dual to h and w respectively,
and span a 2�cube in X), then for all edges e1, f 1 dual to h,w and incident to a
common vertex of X, there is a square in X spanned by e1, f 1.

Proof. Salvetti complex exercise. �

De�nition 2.17 (Specialness). Let X be a nonpositively curved cube complex and suppose
that the itemised conditions in Proposition 2.16 hold for all hyperplanes h,w Ñ X. Then X
is special. �

Proposition 2.18. If X is special in the sense of the preceding de�nition, then it admits a
local isometry to XpΓq for some Γ.4

Proof. Since each hyperplane is embedded, we regard the hyperplanes as subspaces of X. Let
Γ be the graph whose vertices are hyperplanes of X, with an edge whenever two hyperplanes
cross in X. We de�ne a map f : X Ñ XpΓq as follows. First, f sends all vertices of X
to the vertex x0 P XpΓq. Next, the edges of XpΓq are labeled by the vertices of Γ, i.e. by
the hyperplanes of X. For each hyperplane h of X, �x an identi�cation of the immersed
carrier Nphq Ñ X with h ˆ r´1

2 ,
1
2 s, using the hypothesis about that, and note that this

induces an orientation of the edges dual to h in X. Map each such edge e to the (oriented)
edge eh of XpΓq corresponding to h, by an orientation-preserving combinatorial map (after
orienting edges in XpΓq arbitrarily). Now, if edges e1, . . . , ek of X span a cube, then their
dual hyperplanes pairwise-cross and are in particular distinct, and eh1 , . . . , ehk span a cube
in XpΓq, so we can extend to a combinatorial map f : X Ñ XpΓq.

Fix v P Xp0q. Suppose that x, y P Lkpvqp0q. If x, y correspond to edges e, e1 of X, then
consider the hyperplanes h,w dual to e, e1. If h,w are distinct, then eh “ fpeq ‰ fpe1q “ ew,
so fvpxq ‰ fvpyq. If h “ w, then x, y correspond respectively to the terminal end of e and the
initial end of e1 (or the same, but swapping initial and terminal), by the third bullet point,
so fvpxq ‰ fvpyq. Hence f is a local injection.

Since all the links involved are �ag, we just have to check the fullness condition on 1�
simplices. Let x, y P Lkpvqp0q and suppose that fvpxq, fvpyq are joined by an edge in Lk fpvq.
Let e, e1 be as above. Then fpeq “ eh and fpe1q “ ew span a square in XpΓq, so by the
de�nition of Γ, the hyperplanes h,w cross in X. So by the last bullet point, they cross at v,
i.e. e, e1 span a square, and we are done. �

Corollary 2.19. Let G be a �nitely generated group. Then the following are equivalent:

‚ G embeds in a (�nitely generated) RAAG;
‚ G “ π1X, where X is a nonpositively-curved cube complex admitting a local isometry
to XpΓq for some �nite Γ.

3This assumption is just to avoid mentioning basepoints; the conclusions all hold in a disconnected complex
if they hold in each component.

4If X has in�nitely many hyperplanes, then we have to allow Γ to be in�nite.
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‚ G “ π1X, where X is a nonpositively-curved cube complex with the properties from
the list in Proposition 2.16.

Proof. Suppose G ď ApΓq with Γ �nite. Then G ãÑ ApΓq is induced by a cover pXpΓq Ñ
XpΓq, and covers are local isometries. So the �rst statement implies the second. The sec-
ond implies the third by Proposition 2.16. Now suppose that G “ π1X, where X is a
nonpositively-curved cube complex with the listed properties in Proposition 2.16. Consider

the G�action on rX. Since G is �nitely generated, there is a connected G�cocompact subgraph

of rXp1q, and so the hyperplanes crossing this subgraph fall into �nitely many G�orbits. So

by replacing rX with the convex hull of the G�orbit, we can assume that X has �nitely many
hyperplanes. Apply Proposition 2.18 to get a local isometry X Ñ XpΓq (with Γ �nite since
its vertices correspond to the hyperplanes in X) and hence an embedding GÑ ApΓq. �

2.5. Canonical completion and separability. Showing that G is virtually special tells
us that it is Z�linear, residually �nite, etc. But we can do much more, because we have an
excellent tool for making �nite covers that is not much more complicated than what one can
classically (see [Sta83]) do for graphs.

2.5.1. Canonical completion for wedges of circles. Let B be a wedge of circles, with a vertex
x0 and oriented edges e1, . . . , en. Let Y be a �nite graph, and let f : Y Ñ X be a local
isometry. Since the links are all discrete, this just means that f sends all vertices to x0 and
maps open edges homeomorphically, with no backtracking at vertices.

Pull back the labels and orientations of the edges to Y . A ei�path in Y is a connected
subgraph whose edges are all labeled ei. Each ei path is either a directed cycle, or an
embedded directed interval, since f is a local isometry.

Let C
`

Y,B
˘

be the graph obtained from Y as follows: for each i and each ei�path that is
not a cycle, add an edge joining the endpoints of the ei�path. Label that edge ei and orient
it so that the resulting cycle is directed. This gives a local isometry C

`

Y,B
˘

Ñ B, and by

construction, it is actually a covering map. By construction, Y embeds in C
`

Y,B
˘

and the
restriction to Y of the cover is f .

With this construction, one can prove easily that �nitely generated subgroups of free
groups are separable (compare to [Hal49]):

Corollary 2.20 (E�ective Marshall Hall's theorem). Let f : Y Ñ B be a local isometry with
Y a �nite connected graph, and let g P π1B ´ impf˚q be an element of length n. Then there

is a subgroup F 1 of π1B such that impf˚q ď F 1, and g R F 1, and rπ1B : F 1s ď |Y p0q| ` n.

Sketch. Exercise: choose an appropriate enlargement of Y , depending on g, and use canonical
completion. �

2.5.2. Canonical completion for Salvetti complexes. Next, we generalise canonical completion
by allowing some higher-dimensional cubes. Let Γ be a �nite connected graph and let Y be
a compact connected nonpositively curved cube complex and f : Y Ñ XpΓq a local isometry.

Since f restricts to a graph immersion f : Y p1q Ñ XpΓqp1q, and XpΓqp1q is a wedge of

circles, we have a �nite cover C
`

Y p1q, XpΓqp1q
˘

Ñ XpΓqp1q extending f .
The key technical lemma (whose proof I don't �nd that illuminating of the canonical

completion construction, so I am leaving it out):

Lemma 2.21. For each 2�cube s of XpΓq, let Bs Ñ XpΓqp1q be its boundary path. Then

each lift of Bs to C
`

Y p1q, XpΓqp1q
˘

is a 4�cycle.

Proof. Exercise; case analysis. Or see [HW08] or [BRHP15] or various other places. �
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By the lemma, we can add squares (and then higher cubes, which are easier) to get a cover
C
`

Y,XpΓq
˘

Ñ XpΓq where Y embeds and where the restriction to Y of the covering map is
the original local isometry Y Ñ X. The construction is enough to show:

Corollary 2.22. π1Y is separable in ApΓq.

But we will take it a bit further.

2.5.3. Arbitrary special codomains. What if the codomain isn't a Salvetti complex?

De�nition 2.23 (Fibre product). Let A,B,Z be nonpositively-curved cube complexes and
let A,B Ñ Z be local isometries. Then there is a unique nonpositively-curved cube complex
AbZ B, equipped with local isometries AbZ B Ñ A,B, such that

AbZ B A

B Z

//

�� ��
//

commutes, and such that the following holds: let C be a nonpositively-curved cube complex
equipped with local isometries C Ñ A,B so that the following diagram (with solid arrows)
commutes, there is a unique local isometry C Ñ AbZB making the whole diagram commute:

.

AbZ B A

C

B Z

//

�� ��

::

zz

dd

//

We call AbZ B the �bre product of A,B Ñ Z.5 �

Exercise 2.24. Prove that �bre products exist. The 0�skeleton is the set of pa, bq P Ap0q ˆ

Bp0q such that a, b have the same images under A,B Ñ Z. Then 0�cells pa0, b0q, ¨ ¨ ¨ , pan, bnq
form a cube if and only if a0, . . . , an form a cube in A and b0, . . . , bn form a cube in B.
Check that this works, and observe that A bZ B is in general disconnected even if A,B,Z
are connected (there's a more detailed exercise about this at the end).

Let Y be compact and connected and nonpositively curved, let X be special, let X Ñ B
be a local isometry with B a Salvetti complex, and let f : Y Ñ X be a local isometry. The
composition Y Ñ X Ñ B is a local isometry, so we have the �nite cover C

`

Y,B
˘

Ñ B where
Y embeds, constructed before. We thus have a (possibly disconnected) nonpositively-curved
cube complex X bB C

`

Y,B
˘

equipped with local isometries to X and to C
`

Y,B
˘

.

Lemma 2.25. The map XbBC
`

Y,B
˘

Ñ X is a �nite cover, and the inclusion Y Ñ C
`

Y,B
˘

lifts to an embedding Y Ñ X bB C
`

Y,B
˘

.

Proof. We have given local isometries f : Y Ñ X and Y ãÑ C
`

Y,B
˘

, so the universal property

provides a local isometry Y Ñ X bB C
`

Y,B
˘

lifting both f and the inclusion. This has to

be injective since the inclusion is. On the other hand, let rX Ñ X Ñ B be the composition
of the universal cover with the given map X Ñ B. Then since C

`

Y,B
˘

Ñ B is a cover, the

lifting criterion provides a lift rX Ñ C
`

Y,B
˘

which is a local isometry. Hence the universal

property gives a local isometry rX Ñ X bB C
`

Y,B
˘

through which rX Ñ X factors, so it has
to be a cover. �

5It's a pullback in the category whose objects are nonpositively-curved cube complexes and whose mor-
phisms are local isometries, if you're into that sort of thing, which I increasingly think is a good sort of thing
to be into.
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We can always choose B “ BpXq to be XpΓq, where Γ is the crossing graph of X from
the proof of Proposition 2.18. We let

C
`

Y,X
˘

:“ X bB C
`

Y,B
˘

,

and call it the canonical completion of Y Ñ X.

Remark 2.26 (Canonical completion diagram). Here is the commutative diagram sum-
marising canonical completion of the local isometry f : Y Ñ X

X bBpXq C
`

Y,BpXq
˘

C
`

Y,X
˘

X

Y

C
`

Y,BpXq
˘

BpXq

//– //

�� ��

b

jj

tt

44

f

//

where b : X Ñ BpXq is the canonical map to a Salvetti complex given by the crossing graph,
the maps C

`

Y,X
˘

Ñ X,C
`

Y,BpXq
˘

are induced by the natural projections, the covering

map C
`

Y,BpXq
˘

Ñ BpXq is canonical completion, Y ãÑ C
`

Y,BpXq
˘

is the inclusion, and

Y Ñ C
`

Y,X
˘

is the injective local isometry given by the universal property. �

2.5.4. Canonical retraction. Consider Y
f
Ñ X

b
ÝÑ BpXq. First consider the canonical com-

pletion C
`

Y,BpXq
˘

Ñ Y and the canonical inclusion ι : Y Ñ C
`

Y,BpXq
˘

; abusing language

we denote ιpY q by Y . De�ne a map rY : C
`

Y,BpXq
˘

Ñ Y as follows. Recall that ι is sur-

jective on vertices and let rY be the identity on the vertices. If e is an edge of C
`

Y,BpXq
˘

,
then one of the following holds:

‚ e is an edge of Y , and we let rY |e : eÑ e be the identity.

‚ There is a (directed) cycle γ Ñ C
`

Y,BpXq
˘p1q

such that for some (directed) edge ē

of BpXq (a loop), the covering map C
`

Y,BpXq
˘

Ñ BpXq restricts to a cover γ Ñ ē,
and γ “ αe, where α is a (possibly trivial) embedded combinatorial interval. In this
case, rY maps e to α homeomorphically, �xing endpoints.

Thus far, we constructed a retraction rY : C
`

Y, pXq
˘p1q

Ñ Y p1q. Now suppose that c “

e1ˆ¨ ¨ ¨ˆ en is an (immersed) n�cube of C
`

Y,BpXq
˘

, viewed as a product of edges, mapping
to ē1 ˆ ¨ ¨ ¨ ˆ ēn, which is a torus of BpXq (an n�cube with opposite faces identi�ed).

Exercise 2.27. Explain how to naturally extend rY from cp1q to all of c.

After the exercise, we have a retraction rY : C
`

Y,BpXq
˘

Ñ Y , and we de�ne the canonical

retraction r : C
`

Y,X
˘

Ñ Y to be the composition C
`

Y,X
˘

Ñ C
`

Y,BpXq
˘ rY
ÝÑ Y .

The map r is not in general combinatorial; for many applications it is important to worry
about conditions under which it can be made combinatorial, but we're not going into enough
depth to worry about it.

2.5.5. QCERF in the hyperbolic case.

De�nition 2.28. A hyperbolic group G is QCERF if every quasiconvex subgroup of G is
separable. �

Theorem 2.29. Let X be a special cube complex based at a vertex x, let Y be a compact
cube complex based at a vertex y, and let f : pY, yq Ñ pX,xq be a based local isometry. Then
π1pX,xq is residually �nite and impf˚q is separable in π1pX,xq by virtue of being a virtual
retract.
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Proof. Let C
`

Y,X
˘

Ñ X be the canonical completion of f , so that f lifts to an embedding

f̂ : pY, yq Ñ pC
`

Y,X
˘

, f̂pyqq.6 Let G1 ďfi G be the �nite index subgroup corresponding

to the based cover pC
`

Y,X
˘

, f̂pyqq Ñ pX,xq. Let r : C
`

Y,X
˘

Ñ f̂pY q be the canonical
retraction. Then r˚ : G1 Ñ impf˚q is the desired retraction map. In view of Exercise 1.15,
this will show that impf˚q is separable once we know that G is residually �nite.

To prove residual �niteness, we use a special case of the above: let rY0 Ă rX be any �nite

subset of the universal cover rX of X. Let rY be the cubical convex hull of rY0.

Exercise 2.30. Show that rY is a compact subcomplex of rX.

Since rY is convex, the restriction of the covering map rX Ñ X to rY is a local isometry
rY Ñ X, so we get an embedding of rY in a �nite cover C

`

rY ,X
˘

of X. This veri�es residual
�niteness, so we are done. �

Generalising Exercise 2.30 in the hyperbolic setting:

Proposition 2.31. Let X be a compact nonpositively curved cube complex with π1pX,xq a
hyperbolic group. Let H be a quasiconvex subgroup of π1pX,xq. Then there is a compact

nonpositively curved cube complex Y and a based local isometry f : pY, yq Ñ pX,xq such that
impf˚q “ H.

Proof. It's in the exercises. �

Corollary 2.32. Let G be a hyperbolic group which is virtually compact special. Then G is
QCERF.

Remark 2.33. If X is compact, then each immersed hyperplane h is compact. In particu-
lar, if X is special, then by applying canonical completion/retraction to Nphq Ñ X, we get
separability of π1h in π1X. In [HW08], Haglund-Wise showed that if X is compact and non-
positively curved, then it is virtually special provided the following holds for all hyperplanes
h, v Ñ X:

‚ π1h is separable in π1X, and
‚ the double coset π1h ¨ π1v is separable in π1X (dealing with basepoints properly).

When G is hyperbolic then QCERFness of G implies that double cosets of quasiconvex
subgroups are separable [Git99, Min06], so that in particular, if G “ π1X with X a compact
nonpositively curved cube complex, then G is virtually special provided G is QCERF. As we
will see, this is always the case for G a hyperbolic cubical group.

This has a very important consequence: if X,Y are compact nonpositively curved cube
complexes and G “ π1X – π1Y is hyperbolic, then X has a �nite special cover if and only
if Y does. �

Corollary 2.34 (Largeness). Let G be a hyperbolic group which is virtually compact special.
Then either G is virtually cyclic or G has a �nite-index subgroup surjecting onto F2.

Proof. If G is not virtually Z, a standard ping-pong argument gives a quasiconvex free sub-
group F ď G, which by Theorem 2.29 is a virtual retract. (There's a more general formulation
in the exercises.) �

6As mentioned earlier, replacing Y with suitable locally convex thickenings and using Theorem 1.18, this
is already enough to show that impf˚q is separable.
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2.5.6. Wall-injectivity and the magic component. Let f : Y Ñ X be a local isometry of
connected nonpositively-curved cube complexes with X special and Y compact. Recall the
canonical local isometries bX : X Ñ BpXq, bY : Y Ñ BpY q to Salvetti complexes, coming
from specialness of X and Y . Although specialness of Y follows from the existence of a local
isometry Y Ñ X Ñ BpXq, the Salvetti complex BpY q is di�erent from BpXq, since the
crossing graph of Y is di�erent from that of X.

Remark 2.35 (Magic component of C
`

Y, Y
˘

). Consider (yes, really) the canonical comple-
tion of the identity map I : Y Ñ Y ; recall that by de�nition, this

C
`

Y, Y
˘

:“ Y bBpY q C
`

Y,BpY q
˘

.

Let pY : C
`

Y, Y
˘

Ñ Y and p : C
`

Y, Y
˘

Ñ C
`

Y,BpY q
˘

be the projection maps, and recall

that pY is a covering map. We also have a canonical inclusion ι : Y Ñ C
`

Y, Y
˘

lifting the

one to C
`

Y,BpY q
˘

, and a canonical retraction s : C
`

Y, Y
˘

Ñ ιpY q.

What does C
`

Y, Y
˘

actually look like? Well, C
`

Y,BpY q
˘

“ Y Y P , where P is a union of

cubes whose 0�skeletons lie in Y . The maps bY : Y Ñ BpY q and C
`

Y,BpY q
˘

Ñ BpY q both

send all the 0�cubes to the unique 0�cube of BpY q. Hence C
`

Y, Y
˘p0q

“ Y p0q ˆ Y p0q.

The 0�cubes in C
`

Y, Y
˘

of the form py, yq, y P Y span a connected subcomplex of C
`

Y, Y
˘

which is exactly ιpY q, because a collection of such 0�cubes pyi, yiq span a cube exactly when
the yi span a cube in both Y and Y Y P , which is to say, when they span a cube in Y .

Since the covering map C
`

Y, Y
˘

Ñ Y restricts to a degree�1 cover on ιpY q, we see that
ιpY q is the entire �diagonal� component.

So C
`

Y, Y
˘

“ ιpY q \M , where M Ñ Y is a degree�p|Y p0q| ´ 1q cover of Y . (Because

C
`

Y, Y
˘

has |Y p0q||C
`

Y,BpY q
˘p0q
| “ |Y p0q|2 vertices, of which |Y p0q| are in ιpY q. So |M p0q| “

|Y p0q|p|Y p0q|q ´ 1q.) M may have various components. �

De�nition 2.36 (Wall-injective). Any local isometry f : Y Ñ X of special cube complexes
takes hyperplanes to hyperplanes, and we say f is wall-injective if the resulting map on sets
of hyperplanes is injective. �

Exercise 2.37. The canonical inclusion Y Ñ C
`

Y,X
˘

is wall-injective.

Solution. Consider Y ãÑ C
`

Y,BpXq
˘

. Let h, h1 Ă Y be hyperplanes (immersed hyperplanes
in Y are embedded since Y is special, because X is). Let H,H 1 be the hyperplanes of
C
`

Y,BpXq
˘

to which h, h1 map. Note that if H,H 1 are distinct, then so are their elevations

to C
`

Y,X
˘

, so it su�ces to prove that H,H 1 are distinct.

Let r : C
`

Y,BpXq
˘

Ñ Y be the canonical retraction. If f̂ is an edge of C
`

Y,BpXq
˘

,

mapping to an edge f of BpXq (viewed as a generator of the RAAG), then rpf̂q is a path
also mapping to f , by construction.

Suppose H “ H 1 and let e be the oriented edge of BpXq dual to the hyperplane H̄ of
BpXq to which H maps. Let ê, ê1 be edges of Y dual to h, h1 respectively. Choose a path
α in NpHq so that ê´1αê1 is a path in C

`

Y,BpXq
˘

crossing H twice. Then ê´1rpαqê1 is a
path in Y , and the edges of rpαq all map to edges of BpXq corresponding to generators that
commute with e, since that was true in α. Thus rpαq belongs to the carrier of the hyperplane
H. We have just shown that H X Y is connected, so h “ h1. �

Note that when f : Y Ñ X is wall-injective, then the induced map on crossing graphs
gives an injective combinatorial map BpY q Ñ BpXq. This need not be a local isometry,
because disjoint hyperplanes of Y could map to crossing hyperplanes of X.

Suppose that f is injective and wall-injective, so we can just think of Y as a wall-injective
locally convex subcomplex of X. Letting pX : C

`

Y,X
˘

Ñ X be the projection (i.e. the
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cover), consider p´1pY q. By restricting, we have a covering map p´1pY q Ñ Y and we
also have a local isometry p´1pY q ãÑ C

`

Y,X
˘

Ñ C
`

Y,BpXq
˘

, so the universal property

gives a covering map p´1pY q Ñ Y bBpXq C
`

Y,BpXq
˘

. On the other hand, the identity on

C
`

Y,BpXq
˘

and the inclusion Y Ñ X and the universal property give an inverse for this

map, so p´1pY q Ñ Y bBpXqC
`

Y,BpXq
˘

is an isomorphism. But if c is a cube of Y and d is a

cube of C
`

Y,BpXq
˘

such that c, d have the same image in BpXq, then that image c̄ is a cube

of BpY q Ă BpXq since c is a cube of Y . By the construction of C
`

Y,BpXq
˘

, it follows that d

is a cube of C
`

Y,BpY q
˘

, so the cube ĉ of Y bBpXq C
`

Y,BpXq
˘

mapping to cˆ d is naturally

a cube of Y bBpY q C
`

Y,BpY q
˘

“ C
`

Y, Y
˘

. Conversely, if c is a cube of C
`

Y, Y
˘

, mapping to

c̄ of Y and d̄ of C
`

Y,BpY q
˘

Ă C
`

Y,BpXq
˘

, then c gives a cube of C
`

Y,X
˘

mapping to Y .
Hence:

Proposition 2.38. Let Y Ñ X be an injective, wall-injective local isometry with Y compact
and X special. Then the preimage of Y in C

`

Y,X
˘

is C
`

Y, Y
˘

“ Y \M , where Y is the

image of the canonical inclusion Y Ñ C
`

Y,X
˘

and M is the union of the magic components

of C
`

Y, Y
˘

.

One can get a good feel for this thing by looking at the proof in [Wis00] that free groups
are omnipotent ; in that context, Y and X are graphs, so �wall-injective plus injective� means
the same as �injective�.

Example 2.39. At this point, there were some examples, but one had to be there (for the
time being). �

3. Some applications

Here are two closely related results which are the main sources of specialness for hyperbolic
groups in practice.

The �rst is Agol's virtual specialness theorem [Ago13], which says that one can verify
virtual specialness of a hyperbolic group just by cocompactly cubulating7 it:

Theorem 3.1. Let G be a hyperbolic group acting properly and cocompactly on a CAT(0)

cube complex rX. Then there is a �nite-index G1 ď G such that G1z rX is special; in particular,
G is virtually compact special.

The second is Wise's quasiconvex hierarchy theorem [Wis21, Wis09].

De�nition 3.2. Let QVH denote the class of groups de�ned as follows:

‚ t1u P QVH.
‚ If G1 P QVH and rG : G1s ă 8, then G1 P QVH.
‚ If G “ A ˚C B and A,B P QVH and C is �nitely generated and QI-embedded in G,
then G P QVH.

‚ If G “ A˚C and A P QVH and C is f.g. and QIE in G, then G P QVH. �

Theorem 3.3. If G P QVH is hyperbolic, then it is virtually compact special.

Remark 3.4. The converse also holds. �

Corollary 3.5. Let G be a hyperbolic group acting freely and cocompactly on a CAT(0) cube
complex, or having a quasiconvex virtual hierarchy. Then

‚ G is Z�linear.
7Usage varies, but for me, to �cubulate� a group G is to construct a properly discontinuous (but not

necessarily metrically proper) action on a CAT(0) cube complex; to �cocompactly cubulate� G is to construct
a proper cocompact action.
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‚ Every quasiconvex subgroup of G is separable.
‚ G is large (i.e. either elementary or virtually surjects to F2).

Example 3.6 (One-relator groups). Let A be a �nite alphabet and w be a reduced word in
A. A one-relator group has the form G “ xA | wy.

(1) Baumslag conjecture, 1968: one-relator groups with torsion are residually �nite.
(2) If n ě 2, xA | wny is hyperbolic, and the only torsion is the �obvious� torsion.
(3) One relator groups have a hierarchy terminating in �nite groups (Magnus-

Moldavanskii).
(4) Wise [Wis21]: if n ě 2, then the Magnus-Moldavanskii hierarchy is quasiconvex, so

G is virtually compact special.
(5) Linton [Lin22a, Lin22b]: more general conditions ensuring G has a quasiconvex hier-

archy and is therefore virtually special when G is a hyperbolic one-relator group (not
necessarily with torsion). �

Example 3.7 (Mapping tori). Let F be a hyperbolic group and φ : F Ñ F an injective
endomorphism. Let G “ xF, t | tft´1 “ φpfq, f P F y.

(1) If F is free, then G is hyperbolic if and only if it has no Baumslag-Solitar subgroup
[Bri00, BF92, Kap00, Mut20].

(2) If F is a closed surface group, then by Thurston, G is hyperbolic if and only if φ is
pseudo-Anosov, and in this case, Dufour shows G is virtually compact special [Duf12].
(G is the fundamental group of a �bred hyperbolic 3�manifold in this case.)

(3) If F is free, and G is hyperbolic, and φ is irreducible, then G is virtually compact
special [HW16]. Proof inspired by Dufour's technique and subsequently improved so
that irreducibility is unnecessary if φ is an automorphism [HW15].

(4) Many hyperbolic one-relator groups are in the preceding category, using virtual spe-
cialness [KL23].

(5) Dahmani-Krishna MS-Mutanguha, very recently: if F is any hyperbolic group and
φ an automorphism such that G is hyperbolic, then G is virtually compact special
[DMM23]. Uses a generalisation of [HW16] by Dahmani-Krishna MS [DM22]; in the
case where F is free, they recover a much simpler proof of [HW15]. �

Remark 3.8. The group

Γ “ xa, b, t | at “ ab, bt “ bay “ xx, t | rrx, ys, ysxy

is virtually compact special, as an irreducible hyperbolic mapping torus. This shows that
Γ is linear (using Theorem 3.1), so the answer to Sapir's mathover�ow question is nega-
tive. Thing to check: does the one-relator presentation satisfy the hypotheses of Linton's
theorems in [Lin22b], giving an alternate proof of virtual specialness? �

Example 3.9 (3�manifolds). LetM be a closed oriented hyperbolic 3�manifold. Then π1M
is virtually compact special: Kahn-Markovic [KM12] and Bergeron-Wise [BW12] provide the
action on a cube complex needed to use Agol's theorem [Ago13]. This was the �virtually
Haken� conjecture for hyperbolic 3�manifolds, since a consequence is that M has a �nite
cover containing an embedded π1�injective surface. Using another Agol result [Ago08], Wise
[Wis21] had previously showed that this implies M virtually �bres.

IfM is a �nite-volume hyperbolic 3�manifold with cusps (so π1M is only relatively hyper-
bolic), then Wise proved independently that π1M is virtually compact special [Wis21]. This
gets virtual �bring for M independently.

Non-hyperbolic (graph manifold) and mixed cases covered by various results, like [PW14,
PW18, Liu13, HP15, Tid18]. The classic thing is the examples due to Rubinstein-Wang of
3�dimensional graph manifolds M with immersed surfaces S Ñ M that do not embed in
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any �nite cover, i.e. π1S fails to be separable in π1M . This sort of thing happens in other
3�manifolds M even when π1M is virtually special � there are even examples where π1M
is a RAAG. The point is that π1M is not hyperbolic, so the class of subgroups guaranteed
by specialness to be separable � namely those that are represented by local isometries �
is more restricted than in the hyperbolic case. Meanwhile, canonical completion really needs
the domain of the local isometry to be compact. �

3.1. How to cubulate.

De�nition 3.10. G a �nitely generated group, G “ Γp0q with Γ the Cayley graph. A
subgroup H ď G is codimension�1 if there exists r ă 8 such that Γ´NrpHq has at least 2
H�orbits of components C such that C contains points arbitrarily far from Γ. �

Theorem 3.11 (Sageev 1995). If G has a codimension�1 subgroup H, then G acts on a
CAT(0) cube complex with no global �xed point and H is commensurable with the stabiliser
of a hyperplane.

Theorem 3.12 (Sageev 1997, Hruska-Wise 2009). If G is hyperbolic and H1, . . . ,Hk are
quasiconvex codimension�1 subgroups, then G acts cocompactly on a CAT(0) cube complex
whose hyperplane stabilisers are commensurable with H1, . . . ,Hk.

Theorem 3.13 (Bergeron-Wise 2009). Let G be hyperbolic. Suppose that for all distinct
p, q P BG there is a quasiconvex codimension�1 subgroup H ď G such that p, q are in H�
distinct components of G ´ BG. Then G acts properly and cocompactly on a CAT(0) cube
complex.

4. Some exercises and problems

Some of these are from the talks, plus a few extra. Some of them can be done in more
generality than stated here (e.g. one can sometimes weaken compactness in the statements
about special cube complexes). Please let me know (markfhagen@posteo.net) of errors,
impossible exercises, etc. Most of these are aimed at someone who is new to cube complexes,
has seen some �general geometric group theory�, whatever that means, and is happy to read
stu�/look stu� up/ask people things in order to do them.

(1) If G is �nitely presented and residually �nite, it has solvable word problem.
(2) If G is virtually linear (resp. Z�linear) then it is linear (resp. Z�linear).
(3) Prove �by hand� that SLnpZq is residually �nite.
(4) Pro�nite topology. Fix a group G. Let N be the set of all �nite-index normal

subgroups of G. For each N P N , let qN : G Ñ G{N be the natural quotient. Let
q : G Ñ

ś

NPN G{N be qpgq “ pqN pgqqNPN . Equip each G{N, N P N with the
discrete topology, and

ś

NPN G{N with the product topology, and let TG be the
smallest topology on G making q continuous.
(a) Check that pG, TGq is a topological group, and that if H is some other group,

then any homomorphism φ : pG, TGq Ñ pH, THq is continuous.
(b) Check that TGˆG is the same as the product topology on G ˆ G where each

factor is topologised using TG.
(c) Show that G is residually �nite if and only if q is injective if and only if TG is

Hausdor�. Deduce that G is residually �nite if and only if ∆ “ tpg, gq : g P Gu
is closed in GˆG.

(d) Show that S Ă G is separable if and only if S is closed in pG, TGq.
(e) Let f : H Ñ G be a surjective homomorphism and suppose that G is not

residually �nite. Prove that pfˆfq´1p∆q is a non-separable subgroup of HˆH.

markfhagen@posteo.net
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(f) Give a (quick) topological proof that, if G1 ďfi G and H ď G, then H is
separable if and only if H X G1 is separable in G1. And that if G is residually
�nite, then retracts of G are separable. (See Exercise 1.15 and Example 1.17.)

(5) Salvetti complex. Let Γ be a graph and let XpΓq be the Salvetti complex of
the right-angled Artin group ApΓq. Verify that XpΓq is nonpositively curved and
π1XpΓq – ApΓq. Try to construct something analogous for right-angled Coxeter
groups.

(6) Salvetti hyperplanes. Let Γ be a graph and let XpΓq be the Salvetti complex of
the right-angled Artin group ApΓq. Let hÑ XpΓq be a hyperplane, and recall that h
inherits a cubical structure whose cubes are midcubes in XpΓq. Find a graph Ω with
the property that h, equipped with this cubical structure, is isomorphic to XpΩq, and
relate Ω to Γ.

(7) Compact immersed hyperplanes. Let X be a nonpositively-curved cube complex
and let hÑ X be an immersed hyperplane. Check that h is compact provided X is.
Slightly more complicated and more general: if G acts on the CAT(0) cube complex
rX cocompactly (but not necessarily properly), show that each hyperplane-stabiliser
acts on its hyperplane cocompactly.

(8) Torsion. Let rX be a CAT(0) cube complex. The goal of this exercise is to prove,

without CAT(0) geometry, that �nite groups acting on rX �x points.

(a) Let F act on rX by cubical automorphisms, and suppose that F is a �nite group.

Show that rX contains an F�invariant subcomplex C such that C has �nitely

many cubes, and C is convex in the sense that the inclusion C Ñ rX is a local
isometry. (Hint: consider combinatorial halfspaces containing an F�orbit.)

(b) Show that C is itself a CAT(0) cube complex, and conclude that we can therefore

assume that rX is compact.

(c) In rX, what should it mean for a hyperplane to be �outermost�? Come up with
a de�nition of �outermost hyperplane� that you can use to �nd an F�invariant

convex subcomplex of rX with strictly fewer hyperplanes. Now iterate until you
�nd a �xed point.

(d) Conclude that if G is the fundamental group of a nonpositively-curved cube
complex, then G is torsion-free.

(9) Quasi-tree cube complexes. Let G be a �nitely generated group acting freely

[resp. properly] and cocompactly on a CAT(0) cube complex rX. Suppose that every

hyperplane of rX is compact. Prove that G is free [resp. virtually].
(10) Non-residually �nite examples and self-crossing. Let Y be a compact con-

nected nonpositively curved cube complex, let S be a circle subdivided so that it is
a graph, and suppose that γ : S Ñ Y is a combinatorial local isometry with the fol-
lowing property (situating basepoints appropriately): the element rγs P π1Y belongs
to every �nite-index subgroup of π1Y .

Such Y and γ exist, and the original examples (Burger-Mozes [BM97, Wis07], see
[Cap19] for a survey) arise as quotients of the product of two trees by a free cocompact
action.
(a) Why isn't π1Y virtually special?
(b) If T1, T2 are trees, and G ď AutpT1qˆAutpT2q acts freely and cocompactly, and

Y “ GzT1 ˆ T2, then which of the �hyperplane pathologies� can occur in Y ?
(c) Construct a compact nonpositively-curved cube complex Z with an immersed

hyperplane h Ñ Z such that for all �nite covers pZ Ñ Z, if ĥ Ñ h is any cover

so that ĥÑ hÑ Z lifts to ĥÑ pZ, then this lift is not an embedding.

(11) Tree embeddings. Let rX be a CAT(0) cube complex.
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(a) Let H be the set of all hyperplanes in rX. Let H0 Ă H be a set of disjoint

hyperplanes. By considering components of rX ´
Ť

hPH0
h, produce a tree T and

a quotient map q : rX Ñ T such that the preimage of each vertex in T is a convex
subcomplex and the preimages of edges are exactly carriers of hyperplanes in H0.

(b) Suppose that G is virtually compact special. Produce trees T1, . . . , Tn and an
action of G on T1 ˆ ¨ ¨ ¨ ˆ Tn by cubical automorphisms.

(c) Generalise both of the above in some way you �nd compelling.
(12) Special QVH. Let G be a hyperbolic group and suppose that G “ π1X where X is

a compact special cube complex. Show that G P QVH.
(13) Maps to cubes. Let G act freely and with �nitely many orbits of hyperplanes on

the CAT(0) cube complex rX. Suppose that for each hyperplane h, the stabiliser Gh
of h is separable in G.
(a) Show that for each r P N, there is a natural number Nr and a cubical map

fr : rX Ñ r´1
2 ,

1
2 s
Nr such that if x, y P rXp0q satisfy d1px, yq ď r, then

d1pfrpxq, frpyqq “ d1px, yq.
(b) Show that there is a G�action on r´1

2 ,
1
2 s
Nr with respect to which fr is G�

equivariant.
(c) How is this related to stu� like the abelianisation of a right-angled Coxeter

group?
(14) Surfaces. Let S be a closed connected orientable surface of genus g ě 1. (I don't

know the answer to either of the following.)
(a) What is the minimum number of hyperplanes in a special 2�cube complex home-

omorphic to S?
(b) What is the minimum number of hyperplanes in a special cube complex X with

π1X – π1S?
(15) Guided meditation on cubical quasiconvexity. Let X be a compact special

cube complex with π1X hyperbolic. Suppose that H ď π1X is a �nitely generated
subgroup which is quasiconvex.

Let δ P R be such that the metric space p rX, d1q is δ�hyperbolic (if this sort of thing
is new to you, it might be helpful to look up an argument explaining why any Cayley

graph of π1X is quasi-isometric to p rX, d1q� this doesn't involve cube complexes; it's
the Milnor-Svarc lemma � and why hyperbolicity is preserved by quasi-isometries).

Let Y0 be some H�orbit in rXp0q, and �x κ so that Y0 is κ�quasiconvex in rX. Let
rY be the smallest subcomplex containing the intersection of all the halfspaces in rX
that contain Y0.
(a) Show that rY is a convex, H�invariant subcomplex of rX, let Y “ HzrY , and

deduce that there is a local isometry Y Ñ X inducing H ãÑ π1X.

(b) Let x P rX and let πpxq be the set of all y P Y0 such that d1px, yq ď d1px, Y0q`1.
Show that diampπpxqq can be bounded in terms of δ and κ. (This is really a
general fact about quasiconvex subsets of a hyperbolic space, nothing to do with
cubes.)

(c) Deduce that there is some R ă 8 such that any geodesic in rX that starts at
x and ends in Y0 must intersect the R�neighbourhood of πpxq. (This is also a
general hyperbolicity/quasiconvexity thing.)

(d) Deduce that there exists R1 ă 8 such that for all x P rX, either d1px, Y0q ď R1,
or there is a hyperplane separating x from Y0.

(e) Conclude that Y is compact, i.e. H is represented by a compact local isometry
Y Ñ X.
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(f) Strengthen the argument to show that you can choose the compact Y and the
local isometry Y Ñ X representing H with the property that for all bi-in�nite

geodesics L of rX that are contained in some neighbourhood of rY , we actually

have L Ă rY .
(g) Look up what a median algebra is and see if you can �nd or cook up a version

of the above arguments involving fewer inequalities.
(16) Guided meditation on �bre products/height. See also [Wis21, Lem. 8.9] for

something similar to the following. Let X be a connected nonpositively-curved cube
complex and let x P X. Let Y,Z be connected nonpositively curved cube complexes
and let y P Y, z P Z be vertices. Suppose that we have base-point-preserving local
isometries f : pY, yq Ñ pX,xq and g : pZ, zq Ñ pX,xq. Let G “ π1pX,xq and let
HY , HZ ď G be the images of f˚, g˚ (induced maps on fundamental group) respec-
tively.

(a) Let pY : p pXY , x̂Y q Ñ pX,xq and pZ : p pXZ , x̂Zq Ñ pX,xq be based covers corre-
sponding to HY , HZ respectively. Note that f, g lift to injective local isometries

f̂ : pY, yq Ñ p pXY , x̂Y q, ĝ : pZ, zq Ñ p pXZ , x̂Zq.

(b) Let C be the component of pXY bX pXZ (�bre product de�ned using the maps
pY , pZ) containing px̂Y , x̂Zq (check that such a component exists). Let D be the
component of Y bX Z containing py, zq (check that this component exists, too,
where the �bre product is with respect to the maps f, g). Produce a based local
isometry ι : pD, py, zqq Ñ pC, px̂Y , x̂Zqq such that the image of

π1pD, py, zqq
ι˚
ÝÑ π1pC, px̂Y , x̂Zqq

pY bpZ
ÝÑ π1pX,xq

is contained in HY XHZ , where pY b pZ : pXY bX pXZ Ñ X is the composition

of pY (resp. pZ) with the projection from the �bre product to pXY (resp. pXZ).
(c) Use the de�nition of �bre products to show that the image of

π1pC, px̂Y , x̂Zqq
pY bpZ
ÝÑ π1pX,xq is all of HZ XHY .

(Note: one might want to pick a based loop γ Ñ X representing an arbitrary

element of HZ X HY , lift it to pXY and pXZ , and use the universal property to
�nd a lift to the �bre product, but that's not quite right, since γ Ñ X probably
isn't a local isometry. What to do instead?)

(d) Show that ι˚ is π1�surjective.
Now you've shown that the component D of Y bXZ containing py, zq corresponds
to the subgroup HZ XHY of π1pX,xq, in the sense that the map π1pD, py, zqq Ñ
π1pX,xq is injective and has image HZ XHY .)

(e) Check that your construction of ι actually gives a map ι : Y bX Z Ñ pXY bX pXZ .
Letting y vary in f´1pxq and z vary in g´1pxq, deduce the following. Given

α, β P π1X such that Hα
Y XH

β
Z ‰ t1u, the following are equivalent:

‚ there is a based component pD, dq of Y bXZ such that the map Y bXZ Ñ
X restricts to a based map pD, dq Ñ pX,xq such that the image of the

induced homomorphism on fundamental group is Hα
Y XH

β
Z , and

‚ the component C of pXY bX pXZ corresponding to Hα
Y XH

β
Z has nonempty

intersection with the image of ι.
(f) Let C and ι be as in the previous item. How does Wise's argument cited above

use superconvexity to ensure that C has nonempty intersection with the image

of ι, so that Hα
Y XH

β
Z arises from a component of Y bX Z?

(g) Deduce that if π1X is hyperbolic, and H ď π1X is a quasiconvex subgroup, then
there exists n such that the intersection of any n` 1 distinct conjugates of H in
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π1X is trivial. (Previous exercise is useful here; this statement doesn't actually
need cube complexes, but this is an exercise!)

(h) Find a (non-hyperbolic) compact nonpositively-curved cube complex X and a

compact connected Y and a local isometry Y Ñ X such that pXY bX pXY has
(lots of) non-simply-connected components disjoint from Y bX Y .

(17) Products. Let A and B be CAT(0) cube complexes and let rX “ AˆB. Let G act

freely and cocompactly on rX, preserving the product decomposition, and KA and
KB be the kernels of the maps GÑ AutpAq and GÑ AutpBq given by these actions.

(a) For each a P A, b P B, let rYa “ tau ˆ B and rZb “ A ˆ tbu. Note that rYa, rZb
are convex subcomplexes of rX; check this if unsure. Convince yourself that the

stabilisers StabprYaq,Stabp rZbq act cocompactly on rYa, rZb respectively, and that
they respectively contain KA and KB.

(b) Let H “ xKA,KBy ď G. Show that H is the internal direct product of KA and
KB.

(c) Given b, b1 P Bp0q, explain why Stabp rZbqXStabp rZb1q has �nite index in Stabp rZbq;
denote this index IBpb, b1q. This gives a function IB : B2 Ñ N, and we similarly
have IA : A2 Ñ N.

(d) Show that IB is bounded on B2 if and only if KB has �nite index in Stabp rZbq
for all b P B.

(e) Deduce that IB and IA are both bounded if and only if H acts cocompactly on
rX, i.e. if and only if H has �nite index in G.

(f) Suppose that there is a �nite-index subgroup G1 ď G such that G1z rX is special.
Show that IA and IB are bounded, and in particular G virtually splits as a direct
product.

(18) Surfaces in stu�. Let Γ be a 5�cycle with vertices v0, . . . , v4 and vi, vi`1 adjacent
for i P Z{5. Find a nonpositively-curved square complex Y that is homeomorphic to
a closed hyperbolic surface and admits a local isometry Y Ñ XpΓq.

(19) Largeness. Let X be a compact special cube complex.
(a) Using [KMT17] or [Hag22] or otherwise, show that either π1X is virtually

abelian, or there is a compact connected nonpositively-curved cube complex
Y such that π1Y – F2, and a local isometry Y Ñ X.

(b) Using the above, deduce that if G is a virtually compact special group, then
either G is virtually abelian or there is a �nite-index G1 ď G with a surjection
G1 Ñ F2.

(20) Arranging free actions. Let G be a torsion-free hyperbolic group and suppose that
for each g P G, there is a CAT(0) cube complex Xg such that G acts cocompactly
on Xg, there is one G�orbit of hyperplanes h, and StabGphq is quasiconvex in G and,
moreover, xgy acts on Xg with unbounded orbits. Does G admit a free action on a
CAT(0) cube complex? It G virtually compact special?

5. References and further reading

Summary of the references mentioned in the lectures, and some further reading:

5.1. RAAGs and RACGs.

‚ Koberda's notes on RAAGs: [Kob]
‚ Charney's survey on RAAGs: [Cha07]
‚ Davis's book on Coxeter groups: [Dav08]
‚ Cashen's notes on Coxeter groups: [Cas]
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‚ Embedding RAAGs in RACGs: [DJ00]
‚ Linearity of RAAGs and some more graph products: [HW99, Gre90, Hum94]

5.2. Residual properties.

‚ Mal'cev's result on residual �niteness of linear groups: [Mal40]
‚ Marshall Hall's theorem on free groups: [Hal49].
‚ Non-linear residually �nite 1�relator groups, Druµu and Sapir: [DS05]
‚ Non-linear mapping tori: [DS04]
‚ Borisov and Sapir, about (non)linearity/residual �niteness of mapping tori of endo-
morphisms: [BS05]

‚ Scott's paper on separability in surface groups: [Sco78]
‚ Mihailova, F2 ˆ F2 is not subgroup separable: [Mih66]
‚ Baumslag-Solitar groups, non-residual �niteness: [Mes72]

5.3. Special cube complexes and canonical completion.

‚ Stallings' paper on graph immersions and covers etc., pre�guring special cube complex
viewpoint in dimension 1: [Sta83]

‚ Wise's expository book: [Wis12]
‚ Sageev's lecture notes: [Sag14]
‚ Haglund and Wise, special cube complexes: [HW08]
‚ CAT(0) cube complexes, medians and metrics: [Che00, Mie14]
‚ Hyperplane theorem: [Sag95]
‚ Haglund papers with many useful cube complex statements: [Hag23, Hag08]
‚ Early application of 1�dimensional canonical completion and retraction: [Wis00]
‚ Sample canonical completion application, with some explanation of the Haglund-Wise
canonical completion construction: [BRHP15]

‚ Wise's monograph, Section 6+7 deals with special cube complexes: [Wis21]
‚ Work of Minasyan and Gitik on double coset separability: [Min06, Git99]
‚ Some non-special examples (non-exhaustive): [She22, Cap19, Wis07, BM97].

5.4. Cubulating and specialising; applications. The following is very incomplete, both
when it comes to examples and when it comes to applications:

‚ Agol's theorem on virtual specialness: [Ago13] and simpli�ed account of the proof
due to Shepherd: [She21]

‚ Wise's quasiconvex hierarchy theorem, 3�manifold, one-relator group applications:
[Wis21]

‚ Sageev's construction: [Sag95, Nic04a, Nic04b]
‚ Bergeron-Wise, boundary cubulation criterion: [BW12]
‚ Dufour, cubulating �bred hyperbolic manifolds: [Duf12]
‚ Kahn-Markovic, immersed walls in hyperbolic 3�manifolds: [KM12]
‚ Hagen-Wise, cubulating hyperbolic mapping tori: [HW16, HW15]
‚ Some non-hyperbolic 3�manifold results: [PW14, PW18, Liu13, HP15, Tid18]
‚ Cubulating more general hyperbolic mapping tori: [DM22, DMM23]
‚ Linton and Kielak-Linton, one-relator and free-by-cyclic applications: [Lin22b,
Lin22a, KL23]

‚ Useful modern survey/reference on 3�manifolds, Aschenbrenner-Friedl-Wilton:
[AFW15]

‚ Agol's virtual �bring criterion: [Ago08]
‚ Giralt's cubulation of Gromov-Thurston manifolds: [Gir17]
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