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ABSTRACT. We first introduce the class of R—cubings, which specialise the class of complete
geodesic median metric spaces of finite rank in roughly the same way that hierarchically
hyperbolic spaces specialise coarse median spaces.

The first of our main results says that, if X’ is a hierarchically hyperbolic space, then any
asymptotic cone of X is bilipschitz equivalent to an R—cubing. This generalises the fact that
asymptotic cones of hyperbolic groups are R—trees, and also generalises and strengthens a
result of Behrstock-Drutu-Sapir on asymptotic cones of mapping class groups. This makes
essential use of a result of Bowditch about medians on asymptotic cones of coarse median
spaces, as well as Fioravanti’s work on measured halfspaces. We then introduce the notion
of a universal R—cubing, which is a homogeneous R—cubing whose structure is completely
determined by the local R-cubing structure at any point. We show that asymptotic cones
of GG are bilipschitz equivalent to universal R—cubings.

This reduces the problem of studying asymptotic cones of G to that of understanding
the local structure. Under algebraic conditions on a hierarchically hyperbolic group G
— satisfied by the motivating examples of mapping class groups of surfaces, fundamental
groups of compact special cube complexes, and hyperbolic groups —, we prove that (up to
bilipschitz equivalence), the asymptotic cones of G are independent of the ultrafilter and
rescaling sequence.

We also include a (mostly) self-contained exposition of hierarchically hyperbolic groups,
and establish various properties of real cubings beyond what is needed for the application
to asymptotic cones, with an eye to future applications.

Note: (Sub)sections marked © are of independent interest but do not contain material needed
in our application to asymptotic cones.

CONTENTS

1. Introduction

Background.

Real cubings.

Asymptotic cones.

1.1. Real cubings in the world of generalised negative curvature
1.2. Hierarchically hyperbolic groups

1.3. Real cubings

1.4. Real cubing structures on asymptotic cones of HHS

1.5.  Organisation of this document

Acknowledgments

Part 1. First look at real cubings
2. Background on median spaces
2.1. Complete geodesic median spaces

EEE RBEBEEEEmEE

Date: March 29, 2022.
Key words and phrases. hierarchically hyperbolic group, asymptotic cone, real cubing, real tree, median
space, semialgebraic set, £1 space, mapping class group, right-angled Artin group.
1



R-CUBINGS AND HHG

2.2. Halfspaces and walls

2.3. Parallelism

2.4. Measured halfspaces and Fioravanti’s construction

2.5. R-trees as median spaces, and product medians

3. Poset-colourings

3.1. Poset-colourings and associated filters

3.2.  © Orthogonal poset-colouring, tangibility, and finite depth

3.3. © Existence of orthogonal poset-colouring on median spaces

4. Real cubings

4.1. Definition of a real cubing

4.2.  p—consistency and nonempty product regions

4.3. Real cubing rank and contractibility

4.4. © Discrete real cubings

4.5. Convex subspaces and gates

4.6. © Motivating examples

4.7.  © Motivating non-example and some discussion of trapezoids

4.8.  Automorphisms of real cubings

4.9. Local real cubings and groves

4.10. Standard product regions, wedges, and clean containers in real cubings

5. Characterisation of real cubings among median spaces

5.1. Finite-depth tangible poset-colourings give real cubings

5.2. © Real cubings have finite depth tangible poset-colourings

6. © Characterisation of real cubings with clean containers and wedges among
median spaces

6.1. © An index set where * is an involution

6.2. © Characterisation of real cubings with clean containers and wedges

6.3.  Automorphisms of (X,§") from colour-preserving isometries

7. © Characterisation of real cubings with systems of equations and inequalities

8. © Miscellaneous remarks

9. Summary

Part 2. Hierarchically hyperbolic spaces and groups

10. The definition of an HHS

10.1. Realisation and the distance formula

10.2. © Differences between hierarchically hyperbolic spaces and real cubings

10.3.  Group actions on hierarchically hyperbolic spaces

11. Counting, ordering, and colouring in the index set

12.  Coarse median operator on an HHS

13. Hierarchical quasiconvexity and hulls

14. Gates

15.  Standard product regions

16. The cubical approximation theorem

17.  © Sample application of cubical approximation: hierarchically hyperbolic
cone-off

18. Hierarchy paths and product regions

19. Bigsets and all that

20. O Discrete real cubings and hierarchical hyperbolicity

20.1. © Factor systems

20.2. © Orthogonal poset-colouring and factor systems

21. © Questions and remarks

tEEEEEE EEEEEEEEEEE EEEEEZEE EEEEEEEEEEEEEEEEEEEEEE .



21.1.
21.2.

Part 3.

22.
23.
23.1.
23.2.
24.
25.
26.
27.
28.
29.
30.
31.
31.1.
32.
33.
34.
34.1.

34.2.
34.3.
34.4.

34.5.

Part 4.
Algebraic hierarchically hyperbolic groups

35.

35.1.
35.2.
35.3.
35.4.
35.5.
35.6.
35.7.
35.8.
35.9.

35.10.  The kernel of pcjop)+
Examples of algebraic HHG

36.
36.1.
36.2.

Part 5.
37. Concrete trajectories

37.1.
37.2.
37.3.
37.4.

Asymptotic cones
Median metric on the asymptotic cone of an HHS

Ultralimits of product regions

Hierarchy paths become D—geodesics

Statement of Theorem [26.3

The index set §% and its relations
Poset-colouring using §*

Proof of Theorem [26.3]

Homogeneity of the real cubing in the HHG case
Local structure of Cone®(G)

Negligible sequences and the local index set
Summary of results
© Questions and remarks

R-CUBINGS AND HHG 3

© Characterisation of CAT(0) cube complexes that admit an HHS structure [137]
© Characterisation of real cubings that admit an HHS structure

Real cubing structures on asymptotic cones

The median algebra structure on Cone® (X))
Bilipschitz median metrics

Refining the local structure

© What happened to large links when we passed to the cone, and the difference
between 7°U and lim,, CU,,

® Py versus the parallel set of Fy

© Simplification in the presence of wedges and clean containers

© Structure of the real trees associated to elements of the index set of an
asymptotic cone

© Asymptotically R—cubing and asymptotically CAT(0) groups

Algebraic HHGs

Wedges and clean containers

HHG relative to subgroups

The BBF property, the LM property, and local sets for finite index subgroups
Equivariant gate maps

Bounded CU

Closure sets and basic closure sets

Quotients of Stabg(U)

Actions on closures

The definition of an algebraic HHG

Mapping class groups
Compact special groups

Universal real cubings and universality of cones of algebraic HHGs

Concrete S-headings and directions

Concrete compass and geodesic concatenation

Concrete Y-trajectories

Interpretation of the index set via extended concrete trajectories

EEEEEE EEEEEEEEEEEEEEE RE BER RREEBREEEEEEEEEEEE E



R-CUBINGS AND HHG

37.5. Summary

38. Abstract trajectories

38.1. Abstract S-headings

38.2. Abstract compass and geodesic concatenation

38.3. Abstract S-trajectories

38.4. Construction of the real trees

38.5. The index set of a universal real cubing

38.6. Universal real cubings

39. Asymptotic cones of algebraic HHGs are universal real cubings
39.1. Correspondence between abstract and concrete trajectories
39.2.  Universality of cones of algebraic HHGs

40. Questions

Part 6. Diagonal decomposition, straight decomposition, and associated
graphs

41. The representative decomposition of a sequence

41.1. Setup and reminders

41.2. The diagonal decomposition

41.3. Refining the decomposition and labelling the graph

41.4. Interlude: a straight decomposition example

41.5. Applying the straight decomposition to lower-complexity subgroups

41.6. Reading (g,) off from the graph

41.7. Sequence replacement

41.8. Representative decomposition

Part 7. Uniqueness of asymptotic cones of algebraic HHGs
42. The lattice of an asymptotic cone of an HHG
43. Uniqueness of asymptotic cones of an algebraic HHG
References
List of HHS constants
Glossary of Notation

FEEEEE EEEENEEEREE EEEEEEEEEEEE .

1. INTRODUCTION

Background. In 1872, Klein proposed group theory as a means of formulating and under-
standing geometrical constructions. Geometric group theory embraces this view and also
reverses it by using geometrical ideas to give new insights into central problems in group
theory. More precisely, a guiding line in geometric group theory is to deduce properties of a
group via the topological and geometric properties of the spaces on which it acts.

A classical example of this philosophy is Bass-Serre Theory — the theory of groups acting
on simplicial trees. In his foundational book Trees, [Ser80|, Serre proved that a group acts
on a simplicial tree (without a global fixed point or inversion of edges) if and only if the
group splits as a graph of groups (with vertex groups conjugates of the vertex stabilisers).
As an easy consequence, one obtains that a group acts freely on a simplicial tree if and only
if it is free. Bass-Serre theory quickly became a standard tool of geometric group theory and
geometric topology, particularly in the study of 3-manifolds.

The theory of groups acting on simplicial trees developed in three important directions
— one, by considering more general classes of trees leading to the theory of groups acting
on real trees; two, to groups whose geometry is coarsely like a tree, including the influential
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theory of hyperbolic groups; and finally to the theory of groups acting on higher-dimensional
generalisations of simplicial trees, namely CAT(0) cube complexes.

In his famous paper |[Gro87|, Gromov noticed that many results of Dehn concerning the
fundamental group of a hyperbolic surface do not rely either on it having dimension two or
even on being a manifold and hold in much more general context for groups with a geometry
which is "coarsely like a tree". More precisely, Gromov defined hyperbolic groups as finitely
generated (fg, for short) groups with a geometric property abstracting and coarsifying a basic
property of trees: trees are discrete geodesic metric spaces where each geodesic triangle is
a tripod; considering geodesic metric spaces where triangles are "coarse tripods", namely J-
thin triangles, one arrives to the notion of a hyperbolic space. Groups whose Cayley graphs
are hyperbolic are precisely hyperbolic groups. Equivalently, hyperbolic groups are precisely
fg groups that have a geometric (proper discontinuous and cobounded) action on a proper
hyperbolic space.

Originally, the work of Serre on groups acting on simplicial trees had the aim of describing
the structure of subgroups of the group SLy(F'), where F is a field with an integer valua-
tion. Considering the case when F' is a field with a real valuation, one arrives to a natural
generalisation of simplicial trees - the notion of a real tree. In fact, real trees were formally
introduced in the mid 1970s by Chiswell and Tits in this context. So if one removes the
requirement of the metric on the tree to be discrete and allows for a real metric one obtains
the notion of a real tree - a geodesic metric space in which geodesic triangles are tripods.
The theory of real trees came into prominence with the work of Morgan and Shalen |[MS84],
who viewed real trees as “degeneration” of hyperbolic spaces and established connections
between the theory of real trees, hyperbolic geometry and Thurston’s theory of measured
laminations. Namely, they showed that if G is the fundamental group of a closed acyclic
n-manifold, n > 2, then the space of discrete, faithful representations of G' (as conjugacy
classes of orientation-preserving isometries of the hyperbolic space) has a compactification, in
which the ideal points are obtained from certain actions of GG on real trees, hence generalising
Thurston’s compactification of the Teichmiiller space.

The concept that formalises the “degeneration” of a space, that is, the space looked from
“infinitely far away”, is that of an asymptotic cone. The idea of asymptotic cone was first used
by Gromov in his proof of the polynomial growth theorem, formalised by van den Dries and
Wilkie in 1984 [vdDW84| and has proven to be extremely fruitful in analysing the structure
of a group via its action on the cone as well as to study the large scale geometry of the group.

In this language, hyperbolic groups are characterised by their asymptotic cones - a group
is hyperbolic if and only if it is fg and all of its asymptotic cones are bilipschitz equivalent
to the universal real tree.

Once real trees are introduced and related to “limiting” actions of hyperbolic groups, it
is natural to study the structure of groups acting on them. In the summer of 1991, in a
series of lectures, Rips exposited a breakthrough method (based on the Makanin-Razborov
process) for analysing the structure of groups acting on real trees. Rips’ ideas were for-
malised by Gaboriau-Levitt-Paulin and further developed by Bestvina-Feighn, see [BF95],
who proved structural results for groups acting stably on real trees, thereby generalising
Bass-Serre theory. This way, the theory of groups acting on real trees grew into a rich
theory which deeply impacted Group Theory in many different ways: by providing tools
to attack new problems, by simplifying proofs of classical results and by establishing new
connections between group theory and geometry, topology, dynamical systems and model
theory, see [Bes02]. More precisely, Rips’ theory was applied to the study of compactifica-
tions of spaces of geometric structures and was a key tool in the understanding of hyperbolic
groups: their boundary, automorphisms, the isomorphism problem and their model theory,
see [Bow98| [Sel95] [RS94, [Sel09].
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As already noticed by Gromov in [Gro87|, the class of hyperbolic groups has its limitations,
since many important families of groups, such as isometry groups of manifolds and singular
spaces with non-positive curvature, are not hyperbolic, and the class of hyperbolic groups is
not closed under basic group-theoretic operations, such as the direct product. Hence, from
the very beginning, the need for developing a more general theory was apparent.

As simplicial trees have a special role in geometric group theory, it is only natural to look
at higher dimensional generalisations. If trees are contractible CW-complexes built from
1-cubes (edges), one can consider similar complexes built from n-cubes, called CAT(0) cube
complexes (or cubings).

The theory of groups acting on cubings has been developed since the 1980s. Intuitively,
one expects that if a group acts on a tree in such a way that it captures its geometry, then the
group should be relation-free, that is a free group. In the same way, if a group acts nicely on
the direct product of trees — one of the simplest possible example of CAT(0) cube complex —
one would like to understand which type of action captures the structure of the direct product
of the space and reflects it onto the group. Somewhat surprisingly, as shown by examples
of Wise and Burger-Mozes, even free co-compact actions on the simplest possible cubings
fail one’s intuition of a good action. In [BM97], the authors construct a series of finitely
presented simple groups acting freely and co-compactly on the direct product of regular
trees; in [WisQ7|, similar examples are constructed which are not, for instance, residually
finite. Hence, the structure of such groups can be extremely far away from (subgroups) of
direct products of free groups.

Haglund and Wise [HWO08| described a further property of a good action on a CAT(0)
cube complex, called specialness, which removes the “unexpected” examples and transfers
the geometry of the space back to the group. In this context, Haglund and Wise show that
a fg group acts freely, co-specially and co-compactly on the direct product of two trees if
and only if it is virtually the direct product of two free groups. More generally, a fg group
acts freely and co-specially on a CAT(0) cube complex if and only if it is a subgroup of a
right-angled Artin group (RAAG, for short).

In this vein, we have that just as free groups (and their subgroups) are precisely the
groups acting freely on trees, RAAGs and their subgroups are the groups acting freely and
co-specially on CAT(0) cube complexes.

The theory of special cube complexes has since become central in group theory, par-
ticularly in the resolution of the virtual Haken and virtual fibering conjectures about 3—
manifolds [Ago13, Wis21].

Having established CAT(0) cube complexes as the reference for higher-dimensional trees,
it is natural to ask what the corresponding generalisations of hyperbolic spaces and real trees
are.

As in the case of trees, one would like to relax the definition of a CAT(0) cube complex,
both in terms of allowing coarseness and not restricting the metric to be simplicial, to obtain
a family of spaces so that the groups with that geometry enjoy good algebraic properties.

CAT(0) cube complexes can be charecterised via their one-skeleton: a graph is median if
and only if it is the one skeleton of a CAT(0) cube complex [Che00]. From this point of view,
a coarsification of a median graph leads to the notion of coarse median space/group and the
analogue of a real tree is simply a median space.

Coarse median spaces seem to have been introduced (by Bowditch in [Bowl3]) as a
means of extracting the essence of questions related to quasi-isometric rigidity of map-
ping class groups and Teichmiiller space, but they have become objects of geometric and
group-theoretic interest in their own right, featuring strong geometric results like Bowditch’s
quasiflats theorem [Bow19| and Fioravanti’s very recent work on coarse-median preserving
automorphisms [Fio21].
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Median spaces (of which R-trees, CAT(0) cube complexes, and simplicial trees are
examples), have a very rich structure and arise naturally in geometry and group the-
ory. Their ubiquity partially derives from the fact that they arise naturally as “duals”
of collections of bipartitions of some underlying set or space. More precisely, there is
an equivalence of categories between discrete spaces with walls and CAT(0) cube com-
plexes [HP98, [Nic04, ICNO5, [Rol16, [Sag95|. Discrete spaces with walls were generalized by
Cherix, Martin and Valette in [CMV04] to spaces with measured walls. It turns out that in
some sense the category of spaces with measured walls is equivalent to the category of general
median spaces, see [CDHI10, [Fi020, [Fio19]) and this connection was key to relate properties
(T) and Haagerup (a-T-menability) to actions on median spaces and on spaces with mea-
sured walls. This has inspired much recent work, see e.g. [Fi020, [Fiol9, [Fiol8| [CD17], on
group actions on median spaces.

Another motivation for the study of median spaces comes from the work of Bowditch,
who shows that any asymptotic cone of a coarse median space is bilipschitz equivalent to a
median space [Bow18b, Bow13|. In the context of mapping class groups, median structures
on asymptotic cones were also studied in [BDS11bl [BDS11a].

Although there is a variety of structural results for finite rank (coarse) median spaces and
groups, this class is too wide to admit a robust structural theory of groups acting on them,
see [CD17]. Notice that for instance, the metric space L'(X, 1) is median for any measured
space (X, B, ).

This indicates that more restrictive notions for (coarse) median were necessary for devel-
oping a good theory of group actions on them.

A more controlled way of “coarsifying” a CAT(0) cube complex leads to the notion of a
hierarchically hyperbolic space (HHS for short).

Roughly speaking an HHS is a coarse median space that has sufficiently many coarsely
lipschitz projections to hyperbolic spaces to recover the geometry of the space from these
projections. For example, in a CAT(0) cube complex, one can always cone off certain convex
subspaces to obtain a graph that is hyperbolic (in fact quasi-isometric to a tree) [Hagl4l
BHS17bl [Gen19|. In reasonable circumstances (e.g. when the cube complex is the universal
cover of a compact special cube complex), these convex subspaces have less complexity than
the original CAT(0) cube complex, so recursively doing this process finitely many times, one
obtains a family of hyperbolic spaces that collectively capture the coarse geometry of the
original cube complex.

Similarly, if S is a finite-type hyperbolic surface then, fixing a word-metric on the mapping
class group M CG(S), one obtains a hyperbolic space by coning off left cosets of multicurve
stabilisers [MM99] and again one can repeat this process for each multicurve stabiliser and
this process will stop in finitely many steps giving a family of hyperbolic spaces. The key
point is that the metric on the MCG(S) can be approximated by the metric on the family of
hyperbolic spaces (via the coarse projections) [MMO00, Beh04, BKMM12].

This is the motivation behind hierarchically hyperbolic spaces (introduced in [BHSITb
BHS19] and generalised via a slightly different set of axioms in in [Bow18al).

The main goals of this paper are to introduce and study real cubings and to relate them
to asymptotic cones of HHSes and prove that hierarchically hyperbolic groups with suitable
algebraic properties have unique asymptotic cones (up to bilipschitz equivalence). We next
turn to these two main themes: real cubings and asymptotic cones.

Real cubings. The classes of spaces discussed thus far are in Figure [I| At the intersection
of all of the classes of spaces in the picture, we have simplicial trees. On the left are shown
the various "coarse" ways to generalise trees that we have discussed: hyperbolic spaces and
coarse median spaces, with hierarchically hyperbolic spaces sitting in between. CAT(0) cube
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FIGURE 1. Some classes of spaces generalising trees. Inclusions of classes
are shown. The dashed arrow is meant to communicate that CAT(0) cube
complexes are not all hierarchically hyperbolic spaces (see [HS20]), but most
examples considered in this paper are. The wavy horizontal arrows indicate
passage to asymptotic cones (up to possibly modifying the metric on the cone
in its bilipschitz equivalence class). Not shown are many other important
classes of "nonpositively curved" spaces, graphs, and groups: Helly graphs
and coarsely Helly spaces, injective spaces, CAT(0) spaces, systolic complexes,
Morse local-to-global spaces, spaces with quasicubical intervals, quasimedian
graphs, etc.

complexes also fit into this picture (we regard them as basically "fine-geometric" objects
whose coarse geometry is of great interest due to results like those in [BKS16, [Hual7, [Hual8|
HK18]). On the right, we have the "fine-geometric" generalisations, R—trees and median
spaces.

The question is: what is a useful notion of a Rfcubng? What class of spaces includes
both R-trees and CAT(0) cube complexes, but is less general than the class of (finite-rank,
geodesic) median spaces? There are several things we want from such a class of spaces.

Firstly, we want the class of R—cubings to have a more controlled structure and sit between
R—-trees and median spaces in the same way that hierarchically hyperbolic spaces sit between
hyperbolic spaces and coarse median spaces. So, this suggests that an R—cubing should be
a median space, equipped with many projections to R—trees, in such a way that the space
isometrically and median-preservingly embeds in the product of these projections, which are
real trees. We introduce the following

Definition 1.1 (See Definition [7.5)). Fix a set §, for each U € §, let I(U) be a connected
subset of R, and let ¢1(§) be the subset of [ [; I(U) consisting of countably-supported ¢;—
functions f : § — R with f(U) € I(U).

A real cubing is a connected median subalgebra of ¢1(§) of finite rank, finite depth and

with projections into each I(U) x I(V) of one of the following forms:
U

I1e. a "R-CAT(0) cube complex". Some authors call CAT(0) cube complexes "cubings" and we adopt
that name here since "real cubing" rolls off the tongue nicely
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The rank can defined as a bound on the cardinality of subsets of § in which any two
elements are related as in the first picture. If the projection in a plane is of the third type,
we say that U = V, and this turns out to partially order §. The finite depth asks for a finite
bound on the length of chains in this partial ordering.

The definition can be formulated in such a way that it more closely resembles the definition
of a hierarchically hyperbolic space from [BHS19]; see Definition The condition of the
type of projection into the different planes can be reformulated in terms of solutions of
equations reminiscent of the Behrstock inequalities for the mapping class group. The above
description is easier to state; the reformulated version is convenient for working with real
cubing structures on asymptotic cones of hierarchically hyperbolic spaces.

We also characterise real cubings inside the class of median spaces. More precisely, we
introduce the notion of a poset-colouring of the set of walls in a median space and show that
median spaces always admit a canonical poset-colouring. This poset-colouring has a partial
order which defines the depth of the median. In these terms, we show that real cubings are
precisely complete, connected median spaces of finite rank which admit a (tangible) poset-
colouring of finite depth. We also show that the finite depth of the canonical poset-colouring
is equivalent to the median space having a real cubing structure with some additional useful
properties (wedges and clean containers). Poset-colourings are introduced in Section
The characterisation of median spaces that are real cubings in terms of poset-colourings is
in Section [5] and the stronger properties of wedges and clean containers are addressed in
Section [6

This should suggests that R—cubings are very organised, structured spaces where one has
different tools to study them — both the tools of median geometry, and the "hierarchically
hyperbolic philosophy" of projecting a complicated space (the R—cubing) to a family of
tractable spaces (in this case, the R—trees) and working there. Furthermore, the finite depth
and rank defines a finite complexity on the real cubing that allows for inductive arguments,
being the base case, real trees.

The second point we want from real cubings is a connection with HHGs via asymptotic
cones. More precisely, as asymptotic cones of hyperbolic spaces are R—trees and, by an impor-
tant result of Bowditch, asymptotic cones of coarse median spaces are bilipschitz equivalent
to median spaces (see Section , the definition of an R—cubing is aimed at ensuring that
asymptotic cones of hierarchically hyperbolic spaces are bilipschitz equivalent to R—cubings.
Therefore, this result allows to move from the left to the right side of Figure [I} by passing
to asymptotic cones.

Yet another motivation is generalising Thurston’s theory of measured laminations, namely
if G is a fg group, then the space of discrete, faithful representations of G (as conjugacy classes
of orientation-preserving isometries of an HHS) has a compactification, in which the ideal
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points are obtained from certain actions of G on real cubings, hence generalising Thurston’s
compactification of the Teichmiiller space.

Finally, one of the key motivations, is that we expect that real cubings will provide a
platform for a high-rank generalisation of Rips’ machine.

A key feature of Rips’ theory is that finitely presented groups acting stably on real trees
admit induced actions on simplicial trees — stable actions on real trees are approximated
by simplicial actions. Already in the 1-dimensional case is already apparent that only some
good actions can be approximated by simplicial ones and these are precisely the ones that
transfer a good structure theory to the group.

This brings to the natural question of what are the good actions that can be approxi-
mated by simplicial actions on CAT(0) cube complexes. Chatterji-Drutu-Haglund asked this
question [CDHI0, Question 1.11] in the context of median spaces, namely when a nontrivial
action of a group G on a median space can be promoted to an action on a CAT(0) cube
complex. Chatterji and Drutu have shown that irreducible uniform lattices in the product
of finitely many copies of SO(n, 1) act properly and coboundedly on median spaces [CD17],
while results of Chatterji-Fernos-Tozzi |[CEFI16] strongly limit the possible actions of the lat-
tice on CAT(0) cube complexes (including ruling out proper cocompact actions). However,
as pointed out in [CD17, Remark 4.8], the above median spaces have infinite rank and these
type of finitely generated examples are unknown to exist for finite rank median spaces.

We believe that the analogous question for real cubings is more approachable. We show
that if are real cubing admits a discrete metric then it is a CAT(0) cube complex. Since
real metrics can be approximated by (rescaled) discrete ones, this indicates that real cubings
have natural approximations by CAT(0) cube complexes.

In [CRK15], the authors introduced precisely real cubings as ultralimits of sequences of
well-behaved CAT(0) cube complexes. The condition on well-behaved CAT(0)-cube com-
plexes relates directly to the finite depth of the real cubing and it played a key role in the
dynamical analysis of the action and the structure of a fg group acting on the real cubing
as a limit of co-special actions on the CAT(0) approximations. For instance, if the limiting
action on the real cubing is in addition free, it was proven that the group is a subgroup of
the graph product of cyclic and (non-exceptional) surface groups. One should contrast this
result with Rips’ theorem: if a fg group acts freely on a real tree then it is a (subgroup of a)
free product of free abelian and (non-exceptional) surface groups.

In this sense, the definition of real cubing gives a geometric, intrinsic description of the
spaces defined in [CRK15| and any real cubing defined there is a real cubing in the definition
given in this paper. This answers Problem 1 in [CRK15].

This result establishes a strategy and indicates that a good action on a real cubing should
retain the features of co-special actions of groups on CAT(0)-cube complexes. We expect
to use the machinery developed in [CRK15| in order to analyse the structure of groups
having co-special actions on real cubings and, in particular, the structure of groups having
a limiting action coming from homomorphisms to algebraic hierarchically hyperbolic groups
(see Section . This would open the door to the model-theoretic study of the mapping
class groups and more generally, of an algebraic HHG.

We will discuss some questions, test cases, and possibilities more precisely in Section ?77.

Asymptotic cones. Asymptotic cones have played an important role in geometric group
theory since its emergence as a distinct area of mathematics — the idea essentially emerged
in Gromov’s proof of the polynomial growth theorem |Gro81], before being formalised by van
den Dries and Wilkie in 1984 [vdDW84].

Roughly speaking, an asymptotic cone of a metric space is the picture of the space one
sees when standing infinitely far away. Since passing to an asymptotic cone "converts coarse
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geometry into fine geometry" — for example, quasi-isometries are converted into bilipschitz
maps — it is not surprising that asymptotic cones have played an important role in the study
of quasi-isometric rigidity and related questions, see e.g. [BKMM12, [Beh04, Bow18b![Bow16al
Bow19, [Dru00, BHS17c, [KL97a, [K1.95, KL97b, Ham05]. Although passing to an asymptotic
cone involves a loss of information, some classes of group can be characterised by properties
of their asymptotic cones. For example, among finitely generated groups, being virtually
nilpotent is equivalent to having all asymptotic cones locally compact |[Gro81l vdDW84];
being virtually abelian is equivalent to having all asymptotic cones isometric to Euclidean
space |Gro81l [Pan83], and being Gromov-hyperbolic is equivalent to having all asymptotic
cones isometric to real trees [Gro93|.

The latter fact motivates the main question addressed by our work. The construction of
the asymptotic cone of a space involves choices — a non-principal ultrafilter on N, a rescaling
sequence, and an observation point. For groups, the observation point is immaterial, but the
construction depends in an essential way on the choice of ultrafilter and rescaling sequence.
Indeed, in [TV00]|, Thomas and Velicovic constructed a finitely generated group for which
distinct choices of ultrafilters yield non-homeomorphic asymptotic cones, using an infinite
small-cancellation presentation to create "holes" in the Cayley graph visible on some scales
but not others. So, some ultrafilters yield non-simply connected asymptotic cones, while
other asymptotic cones are real trees. These groups are hence lacunary hyperbolic in the
sense of Ol’shanskii-Osin-Sapir; many interesting constructions involving such groups appear
in [OOS09]. In [DS05], Drutu-Sapir construct many examples of finitely generated groups,
each of which has "many" different asymptotic cones as one varies the ultrafilter /rescaling;
for example, there is a group G with continuously many non-homeomorphic asymptotic
cones. Even stranger is a result of Kramer-Shelah-Tent-Thomas: for a uniform lattice G
in an appropriately chosen Lie group, G has continuously many homeomorphism types of
asymptotic cones provided the Continuum Hypothesis fails [KSTT05]. On the other hand,
Thornton had earlier shown that, assuming the Continuum Hypothesis, the same lattices
have a single bilipschitz class of asymptotic cones [Tho02]. Finitely presented groups with
non-unique asymptotic cones (irrespective of the Continuum Hypothesis) were constructed
by Ol’shanskii-Sapir [OS07|, and this was extended by Osin-Ould Houcine in [OHI11]. In
short, among finitely generated, and even finitely presented, and even some familiar groups,
asymptotic cones depend in a serious way on the choice of ultrafilter /rescaling sequence.

And yet, if G is word-hyperbolic, then every asymptotic cone of G is isometric to a (uni-
versal) real tree: a point if G is finite, a line if G is virtually Z, or the unique complete
homogeneous 2¥—valent real tree constructed in [DP01]. Together with the aforementioned
result about virtually abelian groups, it is then natural to ask whether uniqueness of asymp-
totic cones (up to homeomorphism or even bilipschitz equivalence) is a natural feature of
groups satisfying appropriate "generalised hyperbolicity" properties.

In fact, there are various results in this direction. First, Osin-Sapir proved in [OS11,
Corollary 1.6] that if G is hyperbolic relative to subgroups P;, and each P; has the property
that all of its asymptotic cones are bilipschitz equivalent, then the same is true of G. Sisto
proved the same result in [Sis13]. Using this, plus geometrisation, and his own analysis of
asymptotic cones of fundamental groups of graph manifolds, Sisto proved in [Sis11] that if M
is a compact, connected, orientable 3—manifold with toral boundary, then any two asymptotic
cones of m1 M are bilipschitz equivalent.

Uniqueness of the asymptotic cones for fundamental groups of non-geometric graph man-
ifolds is of particular interest since these groups are not nontrivially relatively hyperbolic; in
fact they are thick in the sense of [BDMO09|. Roughly, this means that they contain a highly
connected network of subspaces quasi-isometric to products with unbounded factors, and
these "product regions" can have large coarse intersection. In the case of graph manifolds,
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these pieces are arranged in a tree-like fashion, because they are vertex spaces associated to
vertices in the Bass-Serre tree of the JSJ splitting.

There are other natural examples with similar geometry. If I' is a finite simplicial graph
and Ar is the associated right-angled Artin or Coxeter group, then Ar again consists of
product regions — cosets of subgroups generated by subgraphs of I splitting as proper joins
— arranged in a "quasi-tree-like" fashion (which can be made precise by considering the
extension graph from [KK14] or the contact graph of the Salvetti or Davis complex [Hagl4]).
Likewise, if S is a finite-type oriented hyperbolic surface and MCG(S) is its mapping class
group, then the "product regions" in MCG(S) — cosets of multicurve stabilisers — are
quasi-isometric to products of simpler mapping class groups with Z", and are arranged in a
"hyperbolic" fashion, in the sense that coning off the product regions yields a space quasi-
isometric to the curve graph CS, which is hyperbolic [MM99].

The geometric setup alluded above is formalised in the notion of hierarchical hyperbolicity
from [BHS17b, BHS19], and this is a key ingredient in our main theorem. Rather than involve
hierarchical hyperbolicity at this point in the discussion, we state the following special case
of our main result:

Theorem A (Uniqueness of asymptotic cones, special case). Let G be a finitely generated
group that is quasi-isometric to one of the following:

o m X, where X is a compact special cube complex (in the sense of [HWOS]);
o MCG(S), where S is an oriented hyperbolic surface of finite genus, with finitely many
punctures and boundary components.

Then any two non-principal asymptotic cones of G are bilipschitz equivalent, and in particular
homeomorphic.

Theorem [A was not previously known even for the classes of right-angled Artin or right-
angled Coxeter groups, or braid groups (thought of as mapping class groups of punctured
discs). It also applies to the (non-right-angled) Coxeter groups for which the Niblo-Reeves
action on a cube complex, from [NRO3|, is cocompact (these are characterised by Williams
in [Wil98]), using a result of Haglund-Wise [HW10).

The seemingly strange hypothesis on G — mapping class groups and special cube com-
plexes are not obviously related — comes from the fact that we actually prove the above
theorem for any G in the class of algebraic hierarchically hyperbolic groups. Hierarchically
hyperbolic groups are a well-studied class about which we will say more in this introduction;
our theorem does not apply to all such groups, but requires that the hierarchically hyper-
bolic structure (a geometric feature) arises in a particular way from algebraic properties of G.
While hierarchical hyperbolicity is a natural notion — it is easy to build new examples from
old, and many groups of interest to geometric group theorists are hierarchically hyperbolic
— the algebraic conditions we impose are more ad hoc and are designed to navigate between
specific twin perils: on one hand, the goal is a proof that covers compact special groups
and mapping class groups, and on the other, we need certain geometric properties to imply
algebraic ones. [?

There are other examples to which we expect one can apply Theorem [A. For instance, we
expect (but have not shown) that the Artin groups shown in [HMS21] to be hierarchically
hyperbolic are in fact (virtually) algebraically hierarchically hyperbolic — these are the Artin
groups of large hyperbolic type — and hence have a unique bilipschitz class of asymptotic
cones.

2For the HHG enthusiasts, we need standard product regions to be cosets of subgroups, and we need
orthogonality to imply commutation of certain elements, though we stop short of insisting that the coarse
product structure of product regions comes from an actual direct product of groups, since that isn’t true in
the mapping class group.
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Summary of results. We now summarise the main results of the paper.

In the first part, we introduce and develop a systematic study of the theory of real cubings.

We further characterise real cubings inside the class of median spaces. More precisely, we
introduce the notion of a poset-colouring of the set of walls associated to a median space and
show that median spaces always admit a canonical poset-colouring of the set of walls. This
poset-colouring has a partial order which defines the depth of the median. In this terms, we
show that real cubings are precisely complete, connected median spaces of finite rank which
admit a (tangible) poset-colouring of finite depth. We also show that the finite depth of the
canonical poset-colouring is equivalent to the median space having a real cubing structure
with wedges and clean containers.

In Part 2, we review and complement the theory of HHS needed for the paper.

In part 3, we show that any asymptotic cone of an HHS is a real cubing generalising the
fact that an asymptotic cone of a hyperbolic group is a real tree.

In part 4, we introduce the notion of universal real cubing. The local structure of a
universal real tree (germs at the identity) is a sheaf of lines and so the universal real tree
is uniquely determined by the cardinality of the sheaf. In the case of real cubings, the local
structure is defined as a the quotient of a union of Euclidean spaces (with global bound on
the dimension and endowed with the [1-metric and a base point 0) where the identifications
are over convex subspaces (and all the based points are identified), for instance a sheaf of
planes and lines. In this case, the local structure does not only depend on the cardinality and
it is far from being unique. For such a local structure, we construct a universal real cubing.

In part 5, we introduce the notion of algebraic HHG. As we discussed, free cocompact
actions on CAT(0) cube complexes are not rigid enough to encode the geometry of the space
in the algebraic properties of the group and so the notion of co-special actions/groups was
introduced. In this vein, we introduce the notion of algebraic HHG as a generalisation of a
special group and a hyperbolic group.

In part 6, we concentrate our attention on the question of the uniqueness of asymptotic
cones for algebraic HHGs. We then show that the asymptotic cone of an algebraic HHG is
unique, i.e. it is a universal real cubing and the local structure is unique. In particular, we
establish uniqueness of asymptotic cones of RAAGs and MCGs.

1.1. Real cubings in the world of generalised negative curvature. Since the basic
innovation in this paper is the introduction of the class of real cubings, we first discuss in a
high-level way how these spaces fit into the existing world of spaces exhibiting "generalised
negative curvature".

Simplicial trees are among the basic objects of mathematics, and group actions on sim-
plicial trees are vital to geometric group theory in a wide variety of ways — Bass-Serre
theory [Ser80| is crucial as both a tool for studying "natural" groups and constructing new
ones, and even free actions on trees provide an entire rich universe (consider outer space).
So we start our discussion of hierarchical hyperbolicity and real cubings with a discussion of
trees.

A simplicial tree T' is characterised by geometric features that generalise in various ways,
and one can think of the resulting definitions as notions of generalised negative curvature.
Some of the classes of spaces that generalise trees are naturally thought of from a "fine-
geometric" point of view: one cares about specific points, exact distances, geodesics, local
properties matter, etc. Some of the generalisations are "coarse-geometric": one cares more
about large scales and less about local phenomena.

1.1.1. Median graphs and cube complexes. For example, given three vertices a, b, c € T', there
is a unique vertex m — the median of a, b, c — that lies on each of the three geodesics joining
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pairs of distinct points in {a,b,c}. In view of the fact that any two vertices are joined by a
unique geodesic in T, this means that geodesic triangles in 7" are tripods.

One can abstract just the existence of medians, dropping uniqueness of geodesics, to obtain
the class of median graphs. Part of the great importance of median graphs comes from an
important result of Chepoi [Che00], which says that the class of median graphs is exactly the
class of 1-skeletons of CAT(0) cube complexes, ubiquitous objects that have arisen at many
times and in multiple guises (see, for example, [Sagl4] for an introduction to cube complexes
geared toward geometric group theory).

Median graphs/CAT(0) cube complexes are a higher-dimensional generalisation of trees
(and the median property is only one of several properties of trees with an analogue in
the class of CAT(0) cube complexes). After their introduction into geometric group theory
in [Gro87, Bridl], it was recognised by Sageev [Sag95] that group actions on CAT(0) cube
complexes arise from the presence of so-called codimension—1 subgroups, and that these
"actions on high-dimensional trees" can under certain circumstances be promoted to actual
splittings [Sag97]. This sort of notion matured into the special cube complexes of Haglund-
Wise [HWO08]|, which played a fundamental role in Agol’s resolution [Ago13], relying on work
of Wise [Wis21], of the virtual Haken conjecture. The class of groups known to act properly
on CAT(0) cube complexes is now very large, and significant information about a group —
coarse geometric, algebraic, algorithmic, etc. — can often be gleaned from the construction
of such an action.

1.1.2. Real trees. The property of trees, "every geodesic triangle is a geodesic tripod" (more
formally, given any a, b, c € T', any geodesic joining two distinct points in {a, b, ¢} is contained
in the union of the other two geodesics determined by those three points) can be generalised
in another way. Specifically, we keep the requirement about uniqueness of geodesics, but no
longer insist that our geodesic space is a graph. We then obtain the class of 0—hyperbolic
geodesic metric spaces, i.e. R-trees/real trees.

1.1.3. Median spaces. Moving up in dimension, we get the class of geodesic median metric
spaces. In such spaces, any three points determine some geodesic tripod, but geodesics are
no longer unique.

Median spaces (of which R-trees, CAT(0) cube complexes, and simplicial trees are exam-
ples), have a very rich structure and arise naturally in geometry and group theory. Their
ubiquity partially derives from the fact that they arise naturally as "duals" of collections of
bipartitions of some underlying set or space, via a collection of closely related constructions
(wallspaces or poc-sets, in the discrete case [CNO05, [Nic04, Rol16, [Sag95| or, more generally,
measured walls/halfspaces [CDH10, [Fi020, [Fio19]).

A primary reason why median spaces are geometrically tractable is the existence of a notion
of convexity of subspaces that can be defined in terms of the median, without (explicit)
reference to the metric. This is because median spaces are a particular case of median
algebras, which have a long history in order theory [Ish80, [Sho54) [BH83|. A median algebra
is a set equipped with a ternary operator, the median; a geodesic median metric space is
one where the median operator detects the "central point" of each of the above-mentioned
geodesic tripods (see Definition and Definition [2.2]).

Median spaces play several important roles in geometric group theory. In work of Bowditch,
who seems to have been motivated by quasi-isometric rigidity of mapping class groups and
Teichmiiller space, median spaces arise as asymptotic cones of coarse median spaces, discussed
below; in the context of mapping class groups, median structures on asymptotic cones were
also studied in [BDS11blBDS11a]. Work of Chatterji-Drutu-Haglund on measured wallspaces
established the relationship between actions on median spaces and a-T-mendability, and



R-CUBINGS AND HHG 15

introduced measured wallspaces. This has inspired much recent work, notably by Fiora-
vanti [Fi020! [Fiol9, [Fiol8|, on group actions on median spaces. All of the above will be very
important for us later.

1.1.4. Gromov-Rips hyperbolicity. If we again start with trees, but now "coarse-ify" the ge-
odesic tripods property, we get the familiar class of hyperbolic (quasi)geodesic spaces. The
notion of a hyperbolic group seems to have its roots in small-cancellation theory (among other
things) and was defined by Gromov in [Gro87|. The theory of hyperbolic groups and spaces is
extensive. In this paper, we will mainly not be concerned with hyperbolic groups, but rather
with (non-proper) hyperbolic geodesic spaces arising from Cayley graphs of finitely-generated
groups by "coning off" appropriate subgroups and their left cosets. This is also routine prac-
tice in geometric group theory, beginning with relatively hyperbolic groups [Far98| Bow12].
The range of groups that are not hyperbolic but for which such cone-off procedures, or similar
constructions, yield useful (e.g. acylindrical [Bow08] [Osil6]) actions on hyperbolic spaces is
vast.

1.1.5. Coarse median spaces. Just as geodesic median spaces can be viewed as "higher rank
R-trees", and CAT(0) cube complexes can be viewed as "higher-dimensional simplicial trees",
Bowditch has introduced coarse median spaces |[Bowl13]. In such spaces, triples of points de-
termine quasigeodesic "coarse tripods", and, more generally, finite sets can be (fairly loosely)
approximated by CAT(0) cube complexes. One can define a notion of rank for coarse median
spaces, and geodesic coarse median spaces of rank 1 are exactly hyperbolic spaces.

Coarse median spaces seem to have been introduced as a means of extracting the essence of
questions related to quasi-isometric rigidity of mapping class groups and Teichmiiller space,
but they have become objects of geometric and group-theoretic interest in their own right,
featuring very strong geometric results like Bowditch’s quasiflats theorem [Bow19] and Fio-
ravanti’s very recent work on coarse-median preserving automorphisms [Fio21].

1.1.6. Hierarchical hyperbolicity. Although they include a variety of important examples
(mapping class groups, CAT(0) cube complexes), and the seemingly quite inclusive definition
is restrictive enough to enable one to prove surprisingly strong coarse-geometric results, it is
sometimes useful to work with more restrictive sub-classes of coarse median spaces.

In many motivating examples of coarse median spaces, actual hyperbolicity lurks. For
example, if X is a CAT(0) cube complex, one can always cone off certain convex subspaces to
obtain a graph that is hyperbolic (in fact quasi-isometric to a tree) [Hagl4, BHS17b, (Gen19].

Similarly, if S is a finite-type hyperbolic surface then, fixing a word-metric on the mapping
class group M CG(S), one obtains a hyperbolic space by coning off left cosets of multicurve
stabilisers [MM99].

So, it would appear that some coarse median spaces admit many coarsely lipschitz pro-
jections to hyperbolic spaces (in the above examples, these are just inclusions of the original
space in the coned-off space). Perhaps, since hyperbolic spaces are particularly tractable,
one can study these coarse median spaces via these projections?

This is the motivation behind hierarchically hyperbolic spaces (introduced in [BHS17b,
BHS19] and generalised via a slightly different set of axioms in in [Bowl18al).

Extant discussions of hierarchically hyperbolic spaces focus on two intuitive ways to think
about them. First, as alluded to above, they are spaces where one can obtain a hyperbolic
space by coning off certain subspaces, and these subspaces are coarsely products of "simpler"
spaces, each with the same property; the "complexity" decreases at each stage, and at the
bottom one finds hyperbolic spaces. (See Sisto’s expository article [Sis19] for an elaboration
of this viewpoint.) Here we offer two other intuitive viewpoints.
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First, one of the most important facts about hierarchically hyperbolic spaces is the cubical
approximation theorem from |[BHS17c|, which generalises a standard fact about hyperbolic
spaces and gives a specific sense in which hierarchical hyperbolicity is a strictly stronger
condition than being coarse median. Very roughly, finite sets in coarse median spaces are
approximated by finite CAT(0) cube complexes; in a hierarchically hyperbolic space, these
approximations need to have better convexity properties. So hierarchically hyperbolic spaces
are coarse median spaces that are "coarsely locally cubical" in a particularly strong way.
(In fact, recent work [HP21, [Pet21] shows that in many cases, there is even a global quasi-
isometry to a CAT(0) cube complex.)

Second, formally, a hierarchically hyperbolic space X comes equipped with a set § and, for
each U € §, a coarsely lipschitz projection to a hyperbolic space, 7y : X — CU (the coarse
lipschitz constants and the hyperbolicity constants are uniform over §). The product of these
projections gives a map X — HUGS CU. There are further axioms whose job is to ensure one
can prove two key theorems: the distance formula and the realisation theorem. The first says
that the metric on X can be recovered, up to quasi-isometry, from the projections (it does
not say that the map to the product of hyperbolic spaces is a quasi-isometric embedding,
but it is roughly in that spirit). The second says that the image of the map X — [[;,CU is
characterised by some consistency conditions, which compare projections onto certain pairs
of hyperbolic spaces. Very roughly, one can think of X as the "solution set of a system of
coarse equations" in [ [;; CU, with equations associated to certain pairs U,V € §.

(In the mapping class group context, the "consistency conditions" are sometimes known as
the Behrstock inequalities after [Beh04], and the fact that they coarsely characterise points in
the mapping class group among points in the product of the curve graphs of the subsurfaces
is the realisation theorem of [BKMM12].)

1.2. Hierarchically hyperbolic groups. Our main motivation for working in the context
of hierarchically hyperbolic spaces (HHS) and groups (HHG) is that these provide a com-
mon geometric framework for studying mapping class groups of hyperbolic surfaces of finite
type and fundamental groups of compact special cube complezes (in the sense of Haglund-
Wise [HWO08|). Hierarchically hyperbolic spaces were introduced in [BHS17bl, [BHS19], in-
spired by the cases of mapping class groups [MM99, [MMO00, Beh06, BKMM12| and CAT(0)
cube complexes [Hagl4), [KK14].

There is now a fairly extensive literature on HHS/HHG, part of which is devoted to ex-
panding the class of known examples (e.g. [BHS17a, BR20al, RS20, [Vok17, HMS21| BHMS20,
Ber21, BR20b, IMil20, [DDLS20, DDLS21]|) and part of which is to applying the theory to ob-
tain conclusions about these spaces/groups (e.g. [ABD21, [ BHS17a, BHS17c, [DMS20, DHS17,
RSTI8, [HHP20, HP21] Pet21] Pet21] PS20, Bowl8a] ).

Rather than refer the reader to that literature, we give a fairly self-contained account of
the parts of the theory that we shall need, in Section [2. Many of the results of that section
(like the realisation theorem and distance formula) are from [BHS19|, but we also discuss
tools — notably the cubical approximation theorem — from |[BHS17c| and |[DHS17], and
relate hierarchically hyperbolicity to the work of Bowditch on coarse median spaces [Bow13|.

For the moment, we just recall the data that is needed to define a hierarchically hyperbolic
space. An HHS is a pair (X, F), where & is a quasigeodesic metric space (the reader should
just picture a graph) and § is a set. To each U € §, we associate a é—hyperbolic space CU
and a projection 7y : X — CU (which the reader can assume is coarsely surjective).

This data yields a map 7 : X — HUE& CU, just by taking products of projections. One
of the HHS axioms — the exact definition is Definition [10.1, and the relevant part is the
uniqueness axiom — guarantees in particular that this map will be coarsely injective.
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FIGURE 2. The consistency condition for UhAV. Some possible pairs (a,b)
are labelled (1) and (2); an illegal pair is crossed out.

Some more data is needed to say which points in HUG& CU are in the image of m. The idea
is similar to the earlier discussion of real cubings arising from (infinite) products of intervals.

Specifically, for every distinct U, V' € §F, we will define a subspace Cons(U, V) c CU xCV'.
(The notation is short for "consistent".)

The consistency conditions in Definition [10.1 say that

(X&) < [ (v x pv) " (Cons(U, V),
U#V

where py : [ [yyes CW — CU is natural projection.
Definition [10.1 is designed to enable the proof of the realisation theorem (see Theo-
rem [10.5), which says that any y € (. (pr % pv) ' (Cons(U,V)) satisfies

Sup dew (y, 7w (2)) < K,

for some x € X and some global constant K independent of z and y.
The subspace Cons(U, V') will be chosen according to how U and V' are related.
First, they can be orthogonal, denoted U LV. In this case,

Cons(U,V) =CU x CV,

so the pair U,V puts no constraint on which points in [ [}, CW lie in m(&X’). Another word
for orthogonality could therefore have been independence.

There are two other possibilities. The first is where U,V are transverse, denoted UMV
We fix (coarse) points pi; € CV and p}; € CU, i.e. we pick a basepoint (py;, p%}) € CU x CV.
Here Cons(U,V) is the set of all (a,b) such that a is E—close to p}; or b is E—close to p¥/,
where F is a global constant. This is shown in Figure

(In the setting where X' is the mapping class group of a surface and U,V are overlapping
subsurfaces, this condition is a restatement of [Beh06, Theorem 4.3].)

There is a final way in which U,V can be related: U can be nested, denoted U = V. This
relation is anti-symmetric (and in fact a partial order). In this case, we put a basepoint
pg in CV, and define a map p‘,j : CV — CU. One of the axioms, bounded geodesic image,
governs this map by asking that, if 7y (z), 7y (y) can be joined by a geodesic in CV avoiding
the E-ball about p¥, then py;(my (z)) and pf;(mv(y)) coarsely coincide. The set Cons(U, V)
consists of those (a,b) € CU x CV such that either dey (b, p¥) < E, or dep(a, pf; (b)) < E. A
heuristic picture is Figure
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FIGURE 3. A simple situation with U & V. The map pg collapses each
component of the segment CV — N E(pgv) to one of the endpoints of CU, and
does whatever it likes on the yellow neighbourhood of pg. The red arrows
indicate this map. The numbered pairs of points, viewed as points in CU xCV/,
satisfy the consistency condition, but the ordered pair crossed out in red does not.

We impose two conditions on the partial order =: first, if § # ¢, then it contains a unique
C—maximal element, and second, there is a uniform bound on the length of =—chains. There
are some additional rules relating nesting and orthogonality.

So, coarsely, X is the subset of an (infinite) product of hyperbolic spaces obtained by
"solving" some coarse consistency conditions on transverse and nested pairs in §. That
this characterisation is geometrically faithful is the content of the distance formula (Theo-
rem @) This does not quite say that 7 : X — [[,cs CW is a quasi-isometric embedding
when the latter is given the 1 metric. Instead, it says that, up to additive and multiplica-
tive error, for any x,y € X, the distance dy(z,y) is obtained by summing the quantities
dev (my (z), my (y)) over the V' for which those terms exceed some fixed threshold (indepen-
dent of z,y). A useful feature is that one can enlarge the threshold and obtain the same
conclusion, at the expense of modifying the additive and multiplicative constants.

One important feature of a hierarchically hyperbolic space (X,F) is the standard product
region Py < X associated to each U € §. One way to define Py is as the set of x € X for
which dy (my (z), p¥) < E for all V € § for which the bounded set p¥ is defined, i.e. UMV or
U V. As explained in Section[15 Py is quasi-isometric to a product Fyy x Ey, where Fyy is
roughly the set of points obtainable from a fixed basepoint in Py by varying the projections
to CV,V £ U, and Ey is the set of points obtainable by varying my for V_LU.

Let G be a finitely generated group equipped with a word metric. For G to be a hierar-
chically hyperbolic group (HHG) means that there is an HHS structure (G, §), but it means
somewhat more than this. First, G must act on § cofinitely, preserving the three relations
1,5, mentioned above. Moreover, for each ¢ € G and U € §, we have an associated
isometry g : CU — CgU, and these isometries compose in the expected way. We ask that
g(pl)) = pgg wherever the bounded set p{ is defined, and that 7,y (9z) = g(my(z)) for
all U € § and g,z € G. In other words, G "acts on the HHS structure" in a way that is
compatible with left-multiplication.

In an HHG (G,3§), we have that Pyy = ¢gPy for ¢ € G,U € §, and in practice we
often impose an additional assumption (satisfied by our target examples) that Stabg(U)
acts coboundedly on Py. Because we are free to replace Py by any subspace at uniformly
bounded Hausdorff distance from the subspace Py defined above, and since there are finitely
many G-orbits in §, this lets us assume that there are finitely many Uy, ...,U; € § such
that 1 € Py, = Stabg(U;), and the other product regions are left cosets of the various Py,.
So (G,§) is weakly hyperbolic relative to {Py,,..., Py} — coning off the Py, and their
left cosets yields something quasi-isometric to the hyperbolic space C.S, where S € § is the
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C-maximal element. In general, the product regions can have large overlaps, so this is not
a relatively hyperbolic structure, but the definitions give significant control over how the
product regions can coarsely intersect.

1.3. Real cubings. One way of defining a real cubing — Definition — is modelled on
hierarchical hyperbolicity. Specifically, we have a complete path-connected metric space X,
equipped with a collection §, with a real tree TU associated to each U € §. Exactly as for
hierarchically hyperbolic spaces, § has nesting, orthogonality, and transversality relations.
These satisfy slightly weaker combinatorial constraints than those for HHSes — for example,
we don’t ask for the existence of a unique =—maximal element — in order to accommodate
arbitrary finite-dimensional CAT(0) cube complexes. However, when U &= V or UAV, we
have a point pg € TV, as before, and we have projections ny : X — TU. Another key
difference with the hierarchically hyperbolic setup is that we ask for the product map X —
[ Iy TU determined by the 7y to be an isometric embedding, when the product is given the
{1—metric.

The axioms imply that the image of 7 is an embedding, and we can characterise the image
in much the same way as in the HHS case: it is the solution set of a collection of conditions
on transverse and nested pairs in § — these are illustrated in Figure

In HHSes, there is a constant E such that for any x,y, the set of U € § with
dev(my(z), 7y (y)) = E is finite; we no longer require this in real cubings, which just need
the sum of all such projection distances to be finite. Another key difference is that in an
HHS, if two points are far apart, their projections on some CU are far apart (quantitatively),
but we also no longer require this for real cubings. For example, in the standard real cubing
structure on a CAT(0) cube complex, all of the associated real trees are copies of [0, 1].

A significant part of Part [1]is devoted to alternate characterisations of real cubings. These
are not needed in the proof of Theorem [A] but we believe them to be of independent interest.

First, a standard trick embeds any real tree 7U in the normed vector space ¢1(U) of
countably supported real functions on some set, with the ¢; metric. Using this, we show in
Section [7] that any real cubing is isometric to a semialgebraic subset — i.e. the solution to
a system of equations and inequalities, each in one or two variables — of an ¢; space. We
also prove a converse. The equations and inequalities are closely modelled on the consistency
conditions for HHSes, but the underlying spaces are just copies of R, not arbitrary hyperbolic
spaces.

In a way, this is as expected. Definition turns out to imply that any real cubing is
a complete geodesic median space of finite rank, and the projections to the underlying real
trees are median-perserving. Since median subalgebras of a product of copies of R with the
product median are obtained by deleting intersections of pairs of halfspaces, the semialgebraic
characterisation of real cubings says in particular that the consistency conditions built into
Definition |4.2| specify a median subalgebra of an ¢; space, which turns out to coincide with
the original real cubing.

The fact that real cubings are median raises the obvious question of which median spaces
are real cubings. Real cubings are complete and path-connected by definition, and it follows
fairly easily from the definition that they have finite rank as median algebras. So the question
is really about which complete, connected, finite-rank median spaces are real cubings. We
answer this in terms of colourings of the walls in a median space. Specifically, we prove
Theorem [5.1], which gives sufficient conditions on a median space ensuring that it is a real
cubing. This is what we will use for asymptotic cones. We also generalise the notion of a
factor system in a CAT(0) cube complex, introduced in [BHS17b], to the context of median
spaces, and use this to characterise median spaces admitting "well-behaved" real cubing
structures (where "well-behaved" means that the nesting and orthogonality relations satisfy
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some combinatorial conditions reminiscent of cube complexes). This is done in Section [6]
which is not needed for asymptotic cones but which we think significantly aids understanding
of real cubings.

1.4. Real cubing structures on asymptotic cones of HHS. Our first main result about
asymptotic cones is Theorem which we restate as:

Theorem B. Let (X,§) be a hierarchically hyperbolic space. Then any asymptotic cone of
X s bilipschitz equivalent to an R—cubing.

Theorem |B| generalises a theorem of Behrstock-Drutu-Sapir [BDS11b|, which says that
any asymptotic cone of a mapping class group admits a median structure, and a median-
preserving bilipschitz embedding into an (infinite) product of R—trees. Our result generalises
this because mapping class groups are hierarchically hyperbolic spaces (see [BHS19] or Sec-
tion . Our theorem also strengthens the result of [BDS11al, even in the mapping class
group case: we don’t merely embed the asymptotic cone in a product of real trees, we char-
acterise (from the consistency conditions in the definition of a real cubing) exactly which
points in the product are in the image of this embedding.

Our approach is quite different from that of [BDS11b], with some conceptual overlap. For
them, constructing a median on the asymptotic cone is a consequence of the embedding in
the product of R—trees. For us, the median on the cone, and a bilipschitz-equivalent metric
making the cone an honest median metric space, is the starting point — this median and
metric are provided by results of Bowditch [Bowl13, [Bow18b|. Once we know that we have
a median metric space, replete with median-convex product regions arising as ultralimits
of standard product regions, we can use the measured halfspace structure from the work of
Fioravanti [Fio20] to construct the R—cubing structure.

The idea is as follows. Any asymptotic cone Cone”(X), viewed as a median metric space,
contains many convex subspaces Py arising as ultralimits of sequences of standard product
regions; passing to ultralimits converts the coarse product structure into an actual product
structure, Py = Fy x Ey. As a median space, Cone” X contains walls, and a wall can be
assigned a "colour", namely the E—minimal sequence U of elements of § such that the wall
crosses Fy. Given two points x,y € Fy, we can consider all of the positive-measure sets of
walls that separate x,y and have colour properly nested in U. After removing these sets,
the measure of what remains in a quantity Dy(x,y). This defines a pseudometric, and the
metric quotient turns out to be a real tree. In this way, we obtain a family of real trees TU
and projections Cone®(X) — TU. Intuitively, what he have done is start with the median
space Fy, and collapsed its nontrivial intersections with product regions to points, yielding
a quotient median space which has rank one and is therefore a real tree. We let §o denote
the set of real trees. Since each real tree came from an w—class of sequences in §, the set Fo
inherits nesting, orthogonality, and transversality relations from § (these relations depend in
principle on the ultrafilter). Using these, we verify the axioms from Definition 3

In the remainder of Section [26] we turn to the special case of asymptotic cones of an HHG
(G,5§). We consider the action of the ultrapower G* on the real cubing structure provided
by Theorem |B|and show that this is an action by real cubing automorphisms. We use this to
begin describing the local structure of the asymptotic cone.

By a real cubing automorphism, what we mean is that elements of G* act as median-
preserving isometries on Cone*(G) (with the median metric), which is the restriction of an

3Forrnally, we show in Part |1 that any complete connected finite rank median space whose walls admit
something we call a "finite-depth tangible poset-colouring" is a real cubing, and then in the setting of asymp-
totic cones of HHSes, we use the subspaces Fy to construct a poset-colouring with the desired properties.
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action on the product of all of the underlying real trees (permuting the factors and inducing
isometries on them).

At any point x € Cone“(G), one can consider the set of points y that can be reached
from x by changing only those real tree "coordinates" belonging to some pairwise-orthogonal
set. This is a local real cubing, is a real cubing in its own right, and is median convex in
Cone”(G). Homogeneity of Cone”(G) means that the local structures at any two points are
isomorphic as real cubings.

The local structure plays an essential role, because the strategy for proving Theorem [A
is as follows: we will show that Cone*(G) (as a median metric space) depends only on the
local structure, and then show that the local structure is independent of the ultrafilter and
rescaling.

1.5. Organisation of this document. In Part [1} we introduce real cubings. Specifically,
we first survey the results on median spaces needed throughout the text, and then introduce
the notion of a poset-colouring of the walls in a median space. In order to be useful, poset-
colourings must have some extra properties, namely finite depth (a combinatorial property
of the set of colours) and tangibility (a property of the relationship between the colouring
and the measure on the set of halfspaces coming from the median structure). Although it
will not be needed for our application to asymptotic cones, we show that poset-colourings
can always be constructed, by building the canonical orthogonal poset-colouring. For this
poset colouring, we show that finite depth implies tangibility. This is somewhat reminiscent
of the construction of factor systems in cube complexes from [BHS17b|. This material is in
Sections 2] and [3]

In Section 4] we introduce the first definition of real cubings, which is what we will use
in our application to asymptotic cones. In this section, we establish the main properties we
will need, showing in particular that real cubings are complete, finite-rank, geodesic median
spaces. We relate this to the preceding material in Section [5] where it is shown that real
cubings are exactly the finite-rank complete connected median spaces whose walls admit a
tangible, finite-depth poset-colouring. One direction, namely that the existence of such a
poset-colouring for a median space give a real cubing structure, will be used in the proof of
Theorem

In Section[6] which is not used for asymptotic cones, we press a bit further and characterise
real cubings with some extra combinatorial properties — wedges and clean containers — as
exactly the finite-rank, complete, connected median metric spaces where the depth of the
canonical orthogonal poset-colouring is finite.

Finally, the "slick" definition of a real cubing given earlier in the introduction — in terms
of semialgebraic subsets of an ¢; space — is introduced in Section |7} where it is also shown
to be equivalent to the original definition.

In Part [2] we give an account of hierarchical hyperbolicity. All of the main notions are
defined here, and we have stated all of the results from the literature that we will use (with
some explanation). Some of this material is not strictly necessary for our applications, but
in various places we have provided details not found elsewhere in the literature, or proven
small statements to illustrate the techniques. We give particular emphasis to the cubical
approzimation theorem from [BHS17c|. We also discuss briefly the HHS structure on CAT(0)
cube complexes from [BHS17bl [HS20] and contrast them with real cubing structures, and
relate both to the canonical orthogonal poset-colouring.

Part [3 is devoted to the proof of Theorem as well as some additional properties of
the real cubing structure on the asymptotic cone of an HHS. Specifically, we first discuss a
result of Bowditch that allows one to put a median metric on the asymptotic cone. Then
we show how to construct a finite-depth tangible poset-colouring of the walls, and invoke
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Theorem to conclude that the cone is a real cubing. We do an additional bit of fiddling
with the real cubing stucture so that the index set can be related to the index set of the
original hierarchically hyperbolic space. Then we turn to the HHG case, and analyse the local
real cubing one gets from the real cubing structure on the cone (it is really the local structure
that will be important in our applications). As usual, we close with questions and remarks,
and we direct the reader to Section [34.1] for some examples to illustrate the construction of
the real cubing-structure, which has a couple of subtleties that already make themselves felt
in fairly simple examples.

Part 4] concerns the notion of an algebraic HHG. Here, we introduce several different re-
strictions on an HHG structure, and compile them into the main definition, Definition [35.9.
The main goal is to prove Theorem which provides a sufficiently rich collection of hier-
archically quasiconvex subgroups with controlled projections (playing the role of the groups
Ky in the mapping class group, mentioned above). We then recall the HHG structure on
mapping class groups, and verify that it satisfies each part of the definition of an alge-
braic HHG (here we rely on algebraic results of Bestvina-Bromberg-Fujiwara [BBF15| and
Leininger-McReynolds [LMQ7] as well as the geometric results used in [BHS19| to produce
an HHS structure). We then do the same for fundamental groups of compact special cube
complexes in the sense of Haglund-Wise [HWO0S|.

Part [5] has two goals. First, we introduce the notion of a universal real cubing, and
show how it is constructed deterministically from the data provided by a local real cubing.
Then, given an HHG, we start with the local real cubing structure on an asymptotic cone,
constructed earlier, and show that the resulting universal real cubing coincides with the
original real cubing structure on the cone. This reduces the question of uniqueness of the
cone to the question of uniqueness of the local real cubing structure.

To finish the proof of Theorem [A, which happens in the short Part [7] we therefore need to
pair negligible sequences with respect to one rescaling/ultrafilter with negligible sequences
associated to the other, in such a way that (as discussed above), a bijection at the level of local
index sets (preserving orthogonality and nesting) is established. The key tools are "normal
forms for unbounded sequences" in an algebraic HHG, namely the straight decomposition and
the representative decomposition, both of which are constructed in Part [6. This is where the
algebraic hypotheses play a very important role.

As mentioned earlier, the reader only interested in asymptotic cones can safely skip any
section marked ©.
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Part 1. First look at real cubings

The first part of this paper is self-contained modulo its dependence on the theory of median
spaces, the relevant parts of which we shall recall.

We introduce the notion of an R—cubing (or real cubing) — Definition [4.2] — and establish
the properties needed in our applications to asymptotic cones — the main result of this type
is Theorem [5.1} which gives conditions on a complete, connected, finite-rank median space
sufficient to ensure that it is an R—cubing. We will verify these conditions later, in the context
of asymptotic cones of hierarchically hyperbolic spaces.

Although it is not necessary for our application to asymptotic cones, we also characterise
real cubings among complete, connected, finite-rank median metric spaces, in terms of colour-
ings of walls in such a median space by posets; see Corollary This is very much analogous
to the construction of factor systems in CAT(0) cube complexes, from [BHS17b]. We also
give an alternate characterisation of R—cubings as cubical semialgebraic subsets of £1—spaces.
We formulate this notion and prove its equivalence with Definition in Section

The reader who is familiar with the notion of a hierarchically hyperbolic space will notice
some similarities between hierarchically hyperbolic spaces and R—cubings, although there are
key differences. However, understanding Part [I] does not require familiarity with hierarchical
hyperbolicity.

The class of R—cubings is defined in such a way as to include the following examples:

e CAT(0) cube complexes;

e R-trees, and finite products of R-trees;

e asymptotic cones of mapping class groups, special groups, and other hierarchically
hyperbolic spaces.

In previous work [CRK15], the first and third authors introduced a class of spaces also
called real cubings, namely rescaled ultralimits of sequences of CAT(0) cube complexes
of bounded width. Using the definition of bounded width in conjunction with results
in [BHS17b| and Section of the present paper, one can check that real cubings in the
sense of [CRK15] are real cubings in our sense. It appears that Salvetti complexes of cer-
tain infinitely-generated right-angled Artin groups provide examples of spaces that are real
cubings in the sense of this paper but not in the sense of [CRK15].

Finally, it will be very important in our applications to introduce the notion of a universal
R—cubing. Universal R-trees, in the sense of [DP01], are the simplest examples of universal
R—cubings. However, universal R—trees are uniquely determined by the germs of directions
at a point, which is a sheaf of lines of a given cardinality, but universal R—cubings admit
a much more complex structure of germs of directions. So, the universal R—cubing and its
uniqueness will be determined by local data in a way made later in the paper, where we
introduce these objects. For now, we focus on the fundamentals of R—cubings.

2. BACKGROUND ON MEDIAN SPACES

The theory of median spaces, median algebras, and related structures is extensive. We
now recall just the facts needed in our study of R—cubings. Our treatment relies on [Bow20),
Bowl13, Bowl16b, [CDHI0, [Fio20, Fiol8|. We refer the interested reader to, for instance,
[Ver93, Rol16, Tsb80, BHS3] for more background.

The fundamental notion is that of a median algebra (there are various equivalent formu-
lations of the axioms; see [BH83, Section 1| and the references therein):
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Definition 2.1 (Median algebra, topological median algebra). A median algebra (M[p) is
a set M equipped with a map p : M? — M satisfying:

o u(z,y,y) =y for all x,y € M;

o u(z,y,z) = u(z,x,y) and p(z,y,z) = u(x, z,y) for all x,y, z € M;

o u(p(z,w,y),w,z) = p(x,w, u(y, w,z)) for all w,z,y,z € M.
If M is also equipped with a topology making u continuous when M? is given the product
topology, then (M, u) is a topological median algebra.

A homomorphism f: (M, u) — (N,n) of median algebras is a map f: M — N such that

n(f(a), f(b), f(c)) = f(u(a,b,c)) for all a,b,c € M. In this situation, we sometimes say f
preserves the median. O

Often, we will be interested in a subclass of median algebras, namely median metric spaces.
(We will often use the term median space to mean median metric space, but later in the paper
we will sometimes insist on the word "metric" when there is potential for confusion, namely
when we have a metric space which is also a median algebra, but the combination of the
median and metric do not yield a median metric space.)

Definition 2.2 (Median (metric) space). A median metric space is a triple (M, d, 1), where
(M,d) is a metric space and p : M3 — M is a function such that, for all z,y,z € M, the
point m = p(z,y, z) is the unique point satisfying

d(a,b) = d(a,m) +d(b,m),

for all distinct a,b € {x,y, z} (we think of {x,y, z} as a multiset, so if z = y, we are requiring
m =z = y). If (M,d,pn) is a median metric space, then (M, u) is a topological median
algebra, when M is given the metric topology [Sho54]. O

Definition 2.3 (Subalgebra, median-convexity). Given a median algebra (M, i), a subset
N < M is a median subalgebra if p(z,y,z) € N whenever z,y,z € N. If N satisfies the
stronger property that u(x,y,z) € N whenever z,y € N (and z € M), then N is median-
convexr. When we are working in a median metric space in which median-convexity is equiv-
alent to all other notions of convexity in the discussion, we will sometimes just say “convex”
to mean “median-convex”.

The (median) convex hull of a subset A of M is the intersection of all median-convex
subsets containing A. Similarly, the median subalgebra generated by A is the intersection of
all median subalgebras containing A (which is a median subalgebra). O

One very important example of a convex subset is a median interval:

Definition 2.4 (Median interval). Given a median algebra (M, i) and a,b € M, the median
interval |I(a, b)|is the set of ¢ € M such that p(a,b,c) = c. O

The median interval I(a,b) is the convex hull of the set {a, b}, and should be thought of
as the set of ¢ € M that “lie between” @ and b. This intuition becomes more concrete in the
setting of geodesic median metric spaces, as we will see shortly. See Figure

An extremely important fact about median-convex subsets is [Roll6, Theorem 2.2]:

Theorem 2.5 (Helly property for convex sets). Let (M,u) be a median algebra and let
Ni,..., N, © M be finitely many median-convex subsets such that N; n N; # & for all i, j.
Then (), Ni # &.

The analogue of dimension for a median algebra is the rank. First observe that for n = 0,
the set {0,1}" becomes a median algebra by viewing it as the O—skeleton of an n—cube with
the ¢1—metric, which is a median metric. (The reader may think about it in the following
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FIGURE 4. The median interval between the blue vertices in this CAT(0)
cube complex is shaded.

alternate way: if f,g,h : {0,...,n} — {0,1} are functions, then u(f,g,h) is the function
sending ¢ < n to whichever of 0 or 1 is chosen by the majority of f, g, h.)

The rank of the median algebra (M, 1) is the supremum of the values of n for which M
contains a median subalgebra isomorphic to {0, 1}". We will usually restrict our attention to
finite-rank median algebras.

Definition 2.6 (Locally convex). A topological median algebra (M, u) (for example, a me-
dian metric space) is locally convex if at each point there is a neighbourhood basis consisting
of convex sets. O

We will not work with the definition of local convexity directly, but it will be hypothesised
in some of our statements whose proofs use foundational results in [Fio20] that hypothesise
local convexity. Typically, we will actually assume finite rank, which implies local convexity

by [Fio20, Lemma 2.10).

2.1. Complete geodesic median spaces. Let (X,d, i) be a median metric space. We will
use the following facts freely:

Lemma 2.7 (Lemma 4.6, [Bow16b]). If (X,d) is complete and connected, then it is a geodesic
metric space. Moreover, for all x,y € X, the interval I(x,y) is the union of all geodesics in
X joining X to'y.

In any median space,

peyz) = (] Iab).
a,be{x,y,z}, a#b
(We allow the possibility that, say, x = y, in which case we think of {x,x, z} as containing
two distinct copies of x, so that the trivial interval I(x, x) is a factor in the above intersection
and p(x,x,z) = x.)
In particular, if X is complete and connected, then there is a geodesic triangle with vertices
x,y,z and pu(x,y,z) is the unique point lying on all three sides of this triangle.

Lemma 2.8 (Corollary 2.20 [Fio20]). If (X,d) is complete and (X, i) has finite rank, then
I(x,y) is compact for all x,y € X.

Lemma 2.9. Let (X,d,u) be a complete, connected median metric space. Let Y < X be a

subspace. Then Y is median-convez if and only if Y contains every geodesic whose endpoints
lie inY.

Proof. Suppose that Y is median-convex. Let x,y € Y. Then for any z € I(x,y), we have
p(x,y,z) =z€Y,ie I(x,y) =Y. By Lemma 2.7, every geodesic from x to y lies in Y.
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Conversely, suppose that Y contains every geodesic whose endpoints liein Y. Let x,y € Y
and z € X. Since pu(x,y,z) lies on a geodesic from x to y, it lies in Y. This proves median-
convexity. ]

An extremely important notion is that of a gate. Gates can be defined more generally —
in fact tautologically — for gate-convex subsets of median algebras, but we will only need the
notion of a gate map in a median metric space. In that context, the gate map to a closed,
convex subset is exactly the closest-point projection. More precisely:

Lemma 2.10 (Gate map). Let (X,dq, ) be a median metric space with compact intervals,
or which is complete. Let 'Y be a closed, median-convex subspace. Then there exists a unique

retraction (the gate map) such that for allx € X andy € Y, we have
©(x,y,9(x)) = 8(x).

Moreover, g is a 1-lipschitz median algebra homomorphism. If (X,d) is complete and con-
nected, then for all'y € Y, the point g(x) lies on some geodesic from x to'y.

A set Y < X is gated if there is a map g : X — Y with the first property mentioned in
the lemma. It is not hard to see that such a map, if it exists, is unique.

Proof. See Lemma 2.6 of [Fio20] for an explanation of why closed, median-convex subsets
are gated under the compact intervals hypothesis. Lemma 2.13 of [CDH10] implies the same
conclusion under the hypothesis that X is complete. Lemma 2.13 of [CDHI10| says that g
is 1-lipschitz and [Fio20, Proposition 2.1| says it is a median homomorphism. The defining
property of the gate map, together with Lemma implies the last statement. O

2.2. Halfspaces and walls. In a median algebra (M, u), a halfspace is a subset h ¢ M
such that [b] and M — h are both nonempty and median-convex.

Letting [/ be the set of all halfspaces in M, we have an involution * : H — H sending each
halfspace to its complement. For each h € H, the pair is the wall associated to
h, and given a wall h = {h,h*}, the halfspaces h and h* are associated to h. We denote by
DM the set of walls. R R

Here is some terminology. If w,h € W, we say that h and W cross if the sets h N w, h N
w*, h* nw, h* nw* are all nonempty. If A © M, we say that @ crosses A to mean that Anh
and A A h* are both nonempty. We say that h separates the subsets A, B if A < h, B < h*
or vice versa. We say that h separates the walls @, v if, up to possibly replacing halfspaces
with their complements, we have u c h C v.

In a geodesic median metric space, halfspaces are (geodesically) convex, but they may not
be gated since they may not be closed. In fact, if X is a complete median metric space of
finite rank, then each halfspace is either open or closed, by [Fio20, Corollary 2.23].

2.3. Parallelism. Fix a median metric space (X, d, p). Given a convex subset Y, we write
WI(Y) for the set of walls crossing Y, and we write for the set of halfspaces associated
to walls crossing Y.

We will need the following list of facts, which is Lemma 2.2 in [Fio20):

Lemma 2.11. Let (X,dy, i) be a complete median metric space. Let Y,Y' be closed median-
convex subsets, and let g,g' : X — Y,Y’ denote the gate maps. Then:

(1) g(Y') is conver. If Y nY' # &, then g(Y')=Y'nY.
(2) The gate map to g(Y') is gog'. In particular, if Y < Y', then g=gog'.
(3) gog'og=gog.

Gates relate to halfspaces and walls via the following, which is Proposition 2.3 in [Fio20]:
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Lemma 2.12. Let X,Y be as in Lemma [2.11. Then the assignment h — h 'Y defines
a bijection from H(Y) (the set of halfspaces associated to walls crossing Y) to the set of
halfspaces in the median space (Y ,dy, u). The inverse map is given by h — g~*(h). Moreover,
if 4,0 are walls crossing Y, then uw € v if and only ifunY CvnY.

Lemma 2.13. Let X,Y be as in Lemma 2.11. Let x € X and let w = {w,w*} € W. Then
w separates x from Y if and only if W separates x from g(x).

Proof. One direction is clear, since g(x) € Y. The other direction follows from, for example,
Lemma 2.4 of [Fio20]. O

Important to us will be the following notion of parallelism for convex subspaces:

Definition 2.14 (Parallel). Let (X, d, ) be a complete median metric space and let Y, Y’
be closed, median convex subspaces. Let g, g’ respectively denote the gate maps to Y, Y.
Then we say that Y, Y’ are parallel if g: Y' — Y and g’ : Y — Y’ are isometries. O

Lemma 2.15. If Y, Y’ are parallel, then the isometries gly' and ¢'|y are inverses. Paral-
lelism is an equivalence relation on closed, median-convexr subspaces of X. Finally, if Y and

Y’ are parallel, then H(Y) = H(Y').

Proof. By Lemma @, the gate map to g(Y’) is go g’. On the other hand, since g|y- is an
isometry, g(Y’) = Y. So the restriction of go g’ to Y is the same as the restriction of g to
Y, i.e. the identity. Apply the same argument, reversing the roles of g, g’ and Y,Y’. This
shows that g|ys and ¢'|y are inverses.

If Y = Y’, then the restriction of g to Y is the identity, so Y is parallel to itself. Symmetry
of the parallelism relation follows directly from the definition. Transitivity follows from
Lemma [2.11] since compositions of isomtries are isometries.

Now we prove that parallel closed, convex subspaces cross the same walls, i.e. Y, Y’ being
parallel implies H(Y) = H(Y').

Suppose that A = {h,h*} € W(Y). BEquivalently, h,h* € H(Y), ie. hnY # ¢ and
h* n'Y # (. These intersections are disjoint and convex.

Since g’ is a median homomorphism, g'(hnY), g'(h* n'Y) are nonempty convex subsets of
Y'. Since g'|y is bijective, g'(hnY), g (h* nY) are disjoint. Since Y = (hnY)u (h*nY),
we have Y/ = g'(hnY)u g/ (h*nY), again because g'|y is bijective. So ¢'(hnY), ¢ (h*nY)
are complementary halfspaces in Y’.

By Lemma [2.12, we have that w = (g/) " (¢’'(h 0 Y)) and w* = (¢") "' (¢'(h* nY)) are
halfspaces in H(Y’). Bt wnY = hnY and w* n'Y = h* n'Y, so by Lemma [2.12,
w = h,w* = h*. Hence h, h* € H(Y'). A symmetric argument gives the opposite conclusion,
so H(Y) = H(Y'), as required. O

2.4. Measured halfspaces and Fioravanti’s construction. We now recall the notion
of measured halfspaces from [Fio20], which allows somewhat stronger conclusions than the
(perhaps more intuitively appealing for those whose mental image of a CAT(0) cube complex
favours hyperplanes over halfspaces) measured walls viewpoint from [CDH10| under the as-
sumptions on a median space under which we will work. Specifically, we work with measured
halfspaces partly because [Fi020] has very general statements about which sets of halfspaces
are measurable, and, perhaps more importantly, the following reason. The walls in a median
metric space X define a measured wallspace in the sense of [CDH10|, and it is shown in that
paper that X embeds in the median space dual to the measured wallspace structure. Using
measured halfspaces, one obtains the stronger result that, under reasonable conditions on
X, this embedding is surjective (along with related results). This explains the choice to use
measured halfspaces rather than measured walls.
Fix a complete connected median metric space (X,dy, p) of rank N < oo.
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Given x,y € X, we let H(x,y) be the set of halfspaces h such that x € h and y € h* or
vice versa. (In other words, H(x,y) = H(I(x,y)).)

Let By = 2 be the o-algebra generated by the sets H(x,y) as x,y vary in X. In [Fio20],
Fioravanti extends By to a o—algebra B of morally measurable sets of halfspaces. We just
need some of the properties of moral measurability established in [Fio20].

The main property is that the morally measurable sets support a measure fio such that

ﬁO<H(X7 y)) =d; (X, y)

for all x,y € X (see |[Fio20, Lemma 3.3, Theorem 2.17]). In particular, since d; is a metric,
any two distinct points in X must be separated by a wall.

Now we look at some important examples of fio-measurable sets of halfspaces.

First, a set S of halfspaces is inseparable if, for all u,v € S and all halfspaces h with
u c h < v, we have h € S§. Lemma 3.9 of [Fio20] says that every inseparable set of halfspaces
is measurable.

If Y < X is convex, then H(Y) is fio-measurable; see [Fio20, Lemma 3.6]. This generalises
the fact that 7 (x,y) is measurable. In fact, H(Y) is inseparable.

The other important examples will be halfspace filters and halfspace ultmﬁltersE

Definition 2.16 (Halfspace filter, halfspace ultrafilter). A subset o = 2% is a halfspace filter
if the following hold:
e for all h,v € o, we have h nv # & (i.e. h ¢ v*);
e if he o and h — v, then v € 0.
If the filter o has the additional property that, for all walls {w,w*}, either w € o or w* € o,
then o is a halfspace ultrafilter.
For example, if A X, then the set [c4 of halfspaces containing A is a filter, and this is

an ultrafilter if and only if A is a single point, since any two distinct points are separated by
a wall. g

As inseparable sets of halfspaces, halfspace filters (and in particular halfspace ultrafilters)
are fio-measurable.

Definition 2.17 (Tangible halfspace filter). The halfspace filter o is tangible if for some,
and hence any, x € X, we have fio(o — 0x) < 0. O

For us, the key result from the theory of measured halfspaces is Corollary 3.11 from [Fio20]:

Theorem 2.18. Let (X,dq, ) be a complete connected median space of finite rank. Then
for any tangible halfspace filter o, there exists a convex subspace C such that fio(cNoc) =0
(here /\ denotes symmetric difference).

In practice, we want C' to be gated, but this can be arranged as follows:
Corollary 2.19. The convex subspace C' from Theorem [2.18| can always be taken to be closed.
The proof of the corollary uses the following notation: if S  H, then S* = {h* : h € S}.

Proof. Let C be as provided by Theorem and let C be its closure. Then C is convex.
(Indeed, let x,y € C and z € X. Choose sequences (x,), (y,) in C' converging to x,y. Then
since p is 1-lipschitz, (p(Xn,yn,2)), which is a sequence in C' by convexity, converges to
w(x,y,z), which is therefore in C, as required.)

Following [Fi0o20, Section 3|, let Adj(C) be the set of halfspaces h such that h intersects
C but not C. Then o¢ — o5 = Adj(C)*. By [Fio20, Lemma 3.6], fio(Adj(C)) = 0, while by
Lemma [2.20, fio(Adj(C)*) = fio(Adj(C)). Hence fio(cAog) = 0, as required. O

4We use the term "halfspace ultrafilter" where Fioravanti uses "ultrafilter" because later, in our discussions
of asymptotic cones, we will often refer to ultrafilters on N, a different notion.
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Lemma 2.20. The measure fio is tnvariant under the involution *.

Proof. This is essentially contained in [Fio20, Section 2, Section 3|. Specifically, for any
measurable set E of halfspaces, fio(E) is defined in terms of quantities of the form n(E n
H(x,y)), where 1 is a slightly different measure observed in [Fi020, Section 2| (right after
Theorem 2.17) to be *~invariant. But (£ nH(x,y))* = E* nH(x,y), so *~invariance of fio
follows from invariance of 1 and the definition of fio given in [Fio20, Section 3.1]. O

The next lemma supports the following proposition, and is also used in Section

Lemma 2.21 (Parallelism criterion). Let (X,dy, ) be a complete connected median metric
space of finite rank. Let A, A’ be closed convexr subspaces such that

fio(H(A)AH(A)) = 0.
Then A and A’ are parallel. Hence, in fact, H(A) = H(A').

Proof. Once we prove that A and A" are parallel, it follows from the assumption that they
are closed and convex, along with Lemma [2.15, that H(A) = H(A’). So we now verify
parallelism.

Let g: X — A and g’ : X — A’ be the gate maps. By definition, it suffices to show that
glas is an isometry (a symmetric argument will apply to g’).

Let x,y € A”. Let x = g(x),y = g(y). We have that di(X,y) = fio(H(x,y) n H(A)).
Indeed, the walls separating the gates of x,y are precisely those that separate x,y and cross
A, by Lemma[2.12). Applying the hypothesis that fio(H(A)AH(A')) = 0, we thus get that
di(X,¥) = di(x,y) since the assumption that x,y € A’ implies that H(x,y) < H(A’). Hence
g is an isometric embedding. Similarly, g’ is an isometric embedding.

On the other hand, the walls separating g'(g(x)) from x = g/(x) is the set of walls crossing
A’ and separating x from g(x) and crossing A. Now, no wall crossing A separates x from
g(x), so by the hypothesis, fio(H(x, g (g(x))) = 0. Hence g is surjective. Similarly, g is
surjective, so both maps are isometries between A, A’, whence A, A’ are parallel. O

We will need the following fact about convex product subspaces:

Proposition 2.22 (Product regions). Let (X,di, p) be a complete connected median space
of finite rank. Let A, B c X be closed, median-convex subspaces. Let Ha and Hp be fio—
measurable sets of halfspaces such that the following hold:

o fio(HAAH(A)) = 0;

o fio(HpAH(B)) = 0;

o ifheHs and v e Hp are associated to walls il, 0 respectively, then h and © cross.

Then there exist closed, median convexr subspaces A', B', respectively parallel to A and B,
such that the inclusions A’, B' coincide with the restrictions to A’ x {b} and {a} x B’ of an
isometric embedding A’ x B" — X with median-convez image (for some a€ A';be B’).

We give two similar proofs, to illustrate various concepts.

First proof. We will define a filter o, check that it is tangible, and apply Theorem [2.18 and
Corollary [2.19 to produce a closed median-convex subspace P such that, up to a set of
measure 0, the halfspaces associated to walls crossing P are exactly those in H4 UHp. Then
we will use a result from [Fiol8] to conclude that P decomposes as a product.

Fix an arbitrary basepoint x € X, so that ox denotes the halfspace ultrafilter consisting
of halfspaces containing x.

Note that we can assume that H4 < H(A) and Hp < H(B), by taking intersections,
without affecting our hypothesis. Note that since H(A),H(B) are inseparable, and any
halfspace separating two halfspaces in H 4 must cross every halfspace in Hp, we can replace
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Ha,Hp with their inseparable closures without affecting our hypothesis. Finally, we can
assume H 4, Hp are involution-invariant without affecting our hypothesis.

For each wall w that does not cross A or B, we will assign exactly one of the halfspaces w
or w* associated to w to our candidate halfspace filter o. There are cases to consider:

e Suppose w separates A from B and crosses all walls in H 4. Then assign to o whichever
of w, w* contains B.

e Suppose that w separates A from B and crosses all walls in Hpg but not all walls in
H.a. Then assign to o whichever of w, w* contains A.

e Otherwise, W cannot separate A from B. In this case, assign to o whichever of w, w*
contains A u B.

We claim that o is a filter. For a wall @ not crossing A or B, let o(w) be the associated
halfspace belonging to o. Note that if 1, %’ both fall into the same itemised case above, then
o(w) no(w') # & (both halfspaces contain A or both contain B). The same conclusion
holds if @ falls in the third case and @’ falls in either of the first two.

The only other possibility is thus if o(@) D A and o (@) > B. This means that @ crosses
all the walls in H 4, and W crosses all those in Hpg but not all those in H 4. But in this case
either W, W’ cross, or o orients them toward each other.

Now, for each wall @ not crossing A or B, we have chosen an associated halfspace. If u is
a halfspace such that o(w) < u, then either u € o, or 4 crosses A or B, and we add u to o.
So, after these additions, o is a halfspace filter.

Note that H4 U Hp does not contain any halfspace belonging to o. Indeed, if u € o, then
there exists W not crossing A or B with, say, w € ¢ and w < u. In each of the three cases
above for W, we see that u cannot contain w if u e Ha u Hp.

So, o consists of one halfspace for each wall not crossing A or B, together with some
elements of (H(A) — Ha) u (H(B) — Hp).

We now check tangibility. If h € 0 — o, then h separates x from either A or B, or belongs
to the measure 0 set (H(A) — Ha) u (H(B) — Hp), so

ﬁO(O’ - Ux) < dl(X7 gA(X)) + d1<X7 gB(X))7

where g4, gp are the gate maps to A and B. Since the latter quantity is finite, the halfspace
filter o is tangible.

Hence Theorem [2.18 and Corollary provide a closed, convex P such that, up to a set
of measure 0, we have

H(P) =HauHp.

By the hypothesis and [Fiol8, Proposition 2.10|, P decomposes as the product of closed
convex subspaces A’, B’ that cross the same walls as A, B (up to measure-0 sets of halfspaces).

More precisely,

H(P) = (H(P)nHa) u (H(P)nHp) u (H(P) — (HauHB)),

and all sets involved are fio-measurable. Now, H 4 is *—invariant and the same is true for

Hp. So to apply |[Fiol8, Proposition 2.10], we just need to check that
fio((H(P) — (Ha u Hp)) = 0.

But by construction of o, we have that fio(H(P) — (H(A) v H(B)) = 0, so it suffices to

show that
fio((H(A) U H(B)) — (Ha U Hp)) = 0.

This follows since our hypotheses imply fio(H(A)—H ) = fio(H(B)—Hp) = 0, as required.

Finally, by Lemma[2.21) A and A’ are parallel, and B and B’ are parallel, completing the
proof. O

A variant more conceptual proof of Proposition [2.22]is:
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Alternate proof using parallel sets. Let

Par(A) = A",
A//
where A” ranges over the closed convex subsets parallel to A.

Note that if {w,w*} is a wall crossing Par(A), then by Lemma [2.21, either w, w* € H(A”)
for each parallel copy A” of A, or there exist parallel copies A1, As of A with A; < w, Ay < w*.
So the set W of walls crossing Par(A) decomposes as W = W(A)uO(A), where O(A) consists
of walls crossing every wall in W(A).

Let P be the intersection of all halfspaces containing Par(A), so P is convex as the inter-
section of convex subspaces, and W(P) = W(A) uO(A). So the closure P is a closed convex
set, and as in Corollary @, H(P) is the disjoint union of the (measureable, *-invariant) sets
of halfspaces associated to walls in W(A) and O(A), together with a (necessarily *—invariant)
measure—0 set. So, by [Fiol8| Proposition 2.10| and Lemma P = A x C, where C is a
closed convex set.

Take B’ = gp(B). From our assumptions, g4(B) is crossed by a measure-0 set of halfs-
paces, and is thus a point, so B’ is parallel to a subset of C' and hence P contains a product
of the form A’ x B’ where A’ is a parallel copy of A.

So, to conclude, we need to show that B is parallel to B’, i.e. that gp : B — B’ is an
isometry. If not, then there exist distinct b,b’ € B such that H(b,b’) n Hp contains a
positive measure set S of halfspaces s with P — s. Since the measure is positive, we can
choose s € S such that P n s* = (¥, by Lemma [2.23 below.

Let A be the image of A under the gate map to s*. Since all of the walls in H 4 cross ,
and hence s*, our hypothesis and Lemma @ ensures A, A, are parallel. So A, < s* N P, a
contradiction. Thus B, B’ are parallel, as required. O

The next lemma supports the above proof but is not used elsewhere.

Lemma 2.23. Let (X,dq, p) be a complete connected median space of finite rank. Let Q < X
be closed and conver. Let S be a fio—measurable set of halfspaces such that Q < s and
Qns*# & forallseS. Then fio(S) = 0.

Proof. By the definition of fio, it suffices to show that fio(S n H(x,y)) = 0 for all x,y, so
we can assume S C H(x,y) for some x,y. Hence the elements of S are partially ordered by
inclusion, and two elements are incomparable if and only if they are either disjoint, or their
associated walls cross. Now, all elements of S contain ), and any pairwise-crossing set of
walls has cardinality at most the rank rk(X) < oo, so antichains have size at most rk(X).
Dilworth’s theorem [Dil50] thus allows us to write S as the disjoint union of at most rk(X)
chains. Let s1 & -+ & s; be a chain in §. Choose q € @ N E, which exists by hypothesis.
Then q € s N s, so di(s¥, s;) = 0. Proposition 2.26 in [Fio20] implies k¥ < 21k(X), so
|S| < 2rk(X)2. Finally, since X is connected, singletons have measure 0 (|[Fio20, Lemma
3.5]), so fio(S) = 0, as required. O

2.5. R—trees as median spaces, and product medians. Let § be an arbitrary set, and
for each U € §°, let (T°U,Dy, uy) be a connected median metric space with compact
intervals. Then 7°U is a geodesic space (we are not assuming it is complete). Fixing a
basepoint 1y € T°U for each U, we let £1(F") be the set of (xu)yeze € [y 7°U such that

di(1, (xu)) = ). Duy(ly, xu) < .
U
(Here we use the convention that the above sum is taken over the nonzero terms, so that
the condition that the sum is finite implies that it has countably many nonzero terms. The
order of summation is then immaterial since the terms are nonnegative.)
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Then it is readily checked that ¢1(F), with the ¢; metric di, is a median metric space,
and the median is determined by the media py; in the various coordinates.

The median space ¢1(F) is a bit scary, e.g. it can have infinite rank, and therefore has
some surprising walls (see e.g. [Fio20, Example 2.24]). We will be working with finite-rank,
complete, connected median subspaces of such spaces, which are much better behaved. We
will usually be interested in the case where each 7°U is an R-tree (i.e. a O-hyperbolic
geodesic metric space), using the following:

Proposition 2.24. Every R-tree is a geodesic median metric space of rank at most one.
Conversely, suppose that (T, d) is a metric space with the following properties:

e for all a,be T, there is a unique geodesic joining a to b;

e for all a,b,c € T, there exists a point m such that m lies on the geodesic from x to
y, whenever x,y € {a,b,c} are distinct. (We think of {a,b,c} as a multiset so that, if
a = b, we require m to lie on the geodesic from a to a, i.e. m = a.)

Then (T, d) is an R-tree, and the assignment (a,b,c) — m is the median operator.

A useful feature of the above proposition is that, to check that a uniquely geodesic space
is an R—tree, one must produce the point m (given and triple a, b, ¢), but one need not show
that it is unique (as would be required to check straight from the definition that (7, d) is a
median space).

Proof of Proposition|2.24 Every R-tree is a geodesic space by definition, and is a median
space of rank at most one by, e.g. [Bowl14].

Conversely, let (T, d) be a geodesic space satisfying the properties listed in the statement.
Let a,b,c € T, and let m be as in the statement. Then m satisfies

d(xv y) = d(gj7 m) + d(ya m)

whenever x,y € {a, b, ¢} are distinct (again, viewing {a, b, c} as a multiset), as required for a
median. Since the unique geodesic from a to b passes through m, and the same is true with
either a or b replaced by ¢, uniqueness of the geodesics from m to each of a, b, c, imply that
T is O-hyperbolic. Hence T' is an R-tree (and thus a median metric space of rank 1, with
median m). O

This concludes our review of median spaces. We will sporadically use a few facts not
covered here, directing the reader to the appropriate place in the literature where needed.

3. POSET-COLOURINGS

This section is about colouring the walls in a median space by partially ordered sets of
colours; we will use these colourings later to characterise real cubings among median spaces.
Roughly, Definition [3.1] is a general definition of such a poset-colouring sufficient to ensure
that the median space in question is isometric to a real cubing — real cubings will be defined
in Section 4] and the sufficiency of a poset-colouring for constructing a real cubing structure
is Theorem [5.1] This theorem relies on two technical assumptions on the poset-colouring —
finite depth, which asks for a bound on the lengths of chains in the poset — and tangibility,
which asks that the sets of walls whose colour is bounded above by a given colour naturally
determine a tangible filter. Theorem is what we will use later to show that asymptotic
cones of hierarchically hyperbolic spaces are bilipschitz equivalent to real cubings: we will see
that such asymptotic cones are median, and then use the hierarchically hyperbolic structure
to poset-colour the walls.

Informally, tangibility is what allows us to construct, for each colour U, a closed convex
subspace Fy such that the walls crossing Fy are, up to a measure-0 set, those whose colour
non-strictly precedes U in the partial order.
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In this section, we will also study a canonical colouring of the walls in a median space
by a poset, called the orthogonal poset-colouring. This is not needed for the applications to
asymptotic cones, but it is of independent interest. Indeed, we will show that the finite depth
assumption implies the tangibility assumption in the case of the orthogonal poset-colouring,
and we will use this to characterise "well-behaved" real cubings among complete, connected,
finite-rank median spaces in Corollary [6.9]

3.1. Poset-colourings and associated filters. In this section, (X, d, pt) is a median met-
ric space.

Later, we will impose additional conditions, namely completeness and connectedness of
(X, dy) (which guarantee that it is a geodesic space) and local convexity of (X, dy, u) or the
stronger condition of finite rank.

However, we do not need these conditions yet. The reader should have in mind the
situation where X is complete, connected, and of finite rank, but also the situation where X
is a discrete median algebra, i.e. the O-skeleton of a CAT(0) cube complex.

We let W denote the set of walls in X, and H the set of halfspaces. We refer the reader
to Section for the background on halfspaces needed in this subsection; we will also use
the measure fio from Section [2.4]

We next define a poset-colouring on (X, dy, ).

Definition 3.1 (Poset-colouring, depth). A poset-colouring is a map [Col : W — (§°, ),
where (', ) is a partially ordered set with a unique =-maximal element, denoted S, such
that (§, =) has the following properties.

First, for a given colour U € §, let

Wu|= | J Ca (V)
VEU

be the set of walls whose colours precede (or coincide with) U in the partial order. Let Hy
be the set of halfspaces associated to walls in Wy. Given a set A of walls, we let Col(.A)
denote the set of colours in § arising as colours of walls in .A. We say that, e.g. Col(A) =V
to mean that Col(a) =V for all a € A.

We require the following to hold for all v, h,ieW:

(I) For each U € §, the set Wy is inseparable. (In particular, if @ separates h, o, and
Col(h) = Col(®), then Col(d) = Col(h). Note also that inseparability of Wy implies
inseparability, and hence fio-measurability, of Hy [Fio20, Lemma 3.9].)

(I) Let U,V € § . If there exist nonempty sets A ¢ Wy and B = Wy such that
fio(Hu — Ha) =0, fio(Hv — Hp) = 0 and each wall in A crosses each wall in B, then
U and V are E-incomparable.

(ITI) Let U,V € § . Suppose we have an inseparable set A of walls such that Col(A) U,V
and the set H 4 of halfspaces associated to A has positive fio-measure. Then there
exists a family {W;}ic; of elements in § such that

o fio(Hw, " H) >0 forall i e I, and

e W, C U,V foralliel, and

o fio(Ha—J;(Hw, nHa)) =0.

The third condition says that, up to a subset of A whose set of associated halfspaces
has measure 0, we have that a € A implies Col(a) = W; for some i € I.

(IV) Let U,V € §  (we allow for the possibility that U = V). Suppose that there exist
inseparable sets A, B of walls such that Col(A) = U,Col(B) £ V and every wall in
A crosses every wall in B. Let H 4, Hp be the sets of halfspaces associated to A and
B and suppose that both sets of halfspaces have positive measure. Then there exist
families {U,}icr and {V;} ey of elements in & such that
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U;,cUforalliel,
V;EVforalljeJ,
for i€ I,j € J, any wall in Wy, and any wall in Wy ; cross,
fio(Ha—UJ;(HanHu,)) =0 and fio(Ha n Hy,) > 0 for all i € I, and
fio (HB —U; (M5 ’HV].)) — 0 and fio(Hg ~ Hy,) > 0 for all j € J.
The last two COPditions say that, up to subsets of H A,%ﬁ of measure 0, we have
Col(a) = U, Col(b) =V for some ie I,je J, when ae A,be B.
Col is a depth D poset-colouring, for D € N, if every E—chain has length at most D and

D is minimal with this property. We will use the term nesting to refer to the partial order
C in a poset-colouring. O

Remark 3.2. [Conditions (III), will be applied to subsets of halfspace-intervals| In
practice, we apply condition (III) to a set A such that H4 = Hu n Hv n H(x,y) for some
x,y € X. The condition assumes that this set has positive measure, and provides {W};es
such that each W; © U, W, C V, and each i satisfies fio(Hw, n H4) > 0. The condition
says that, up to a measure 0 set, H 4, which is contained in the halfspace interval H(x,y),
is covered by positive-measure inseparable sets H(x,y) N Hw,. This is how the condition
functions in Theorem for instance (and condition has a similar role). O

Fix a poset-colouring Col : W — & as in Definition . We can use Wy to associate to
U a halfspace filter as follows.

Definition 3.3 (Filter associated to a colour). Fix a basepoint x¢ € X. Fix a colour U e .
Recall that
Wy = | Col (V).
vVcU
Suppose that Wy is nonempty. Let VVILJ be the set of walls @ such that @ crosses h for all
he W[Z
Let h € W — Wy. Then, up to relabelling h and h*, one of the following holds:
o he V\/[lJ and h is the halfspace associated to h that contains Xg.
e For some w = {w, w*} € Wy we have w < h. Moreover, for any @' € Wy not crossing
h, some halfspace associated to @’ is contained in h, by the condition on separation
in Definition [3.1]
Let E be the set of halfspace h thus chosen, as h varies in W — Wy. See Figure O

The next observation is an immediate consequence of the definition of a filter and the
definition of a poset-colouring:

Lemma 3.4. For each colour U € § , the set oy is a filter. In particular, oy is fio—
measurable, and so is oy — 0x,, where ox, is the set of halfspaces containing xq.

Proof. Once we show that oy is a filter, then Lemma 3.9 in [Fio20] will imply that it is
fio-measurable, and so is oy — 0x,.

First observe that if a,b € oy, then we cannot have a < b*. Indeed, let d,lA) be the
walls respectively associated to a,b. If d,l; eEW- Wy u thj), then this would violate the
separation condition in Definition If &,I; € W[lj, then a,b both contain xg. Finally, if
ae Wé and l;¢ WILJ, then there exists w € Wy with w < b and a, w crossing. So a nw # &,
soanb# .

Next observe that if a € oy and a < b, then b € oy, by definition of oy. Hence oy is a
filter. O
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FIGURE 5. Constructing the filter oyy. The unoriented walls are in Wyy, while
the other walls are oriented toward the halfspace in oy.

The point of the following condition is to allow one to construct, for each colour in a poset-
colouring, a corresponding closed, median-convex subspace of X, under the hypotheses that
X is complete, connected, and locally convex, using Theorem [2.18 and Corollary [2.19. We
have isolated the tangible filter condition because, in our applications to asymptotic cones
of hierarchically hyperbolic spaces, there will be a natural poset-colouring for which both
finite depth and the below tangible filter condition hold by construction. However, there
are poset-colourings that exist more generally, and for these we will check below that the
tangible filter condition actually follows from finite depth. This is not strictly needed for the
application to asymptotic cones, but it will help with the independently interesting question
of which median spaces are R—cubings.

Definition 3.5 (Tangible filter condition). Fix a basepoint x¢y € X. The poset-colouring
Col : W — § satisfies the tangible filter condition if for each colour U € § such that
Wu # , the filter oy is tangible in the sense of [Fi020, Section 3], i.e. for some (hence any)
x € X, we have

fio(ou — 0x) < .

The “hence any” bears some explanation since oy depended on our choice of xqg. If we had
defined oy; in the exact same way, except with reference to a basepoint x;, then we would
have oyAoy < H(xo,x1), which has measure di(xg,x1) < . The other part of “hence
any’ — the a priori dependence of the definition of tangibility on xg for a fized filter o, is
handled by a similar argument in [Fio20]. O

Example 3.6 (Sector non-example). Let X be the median metric space whose underlying
set is the subset of points (z,y) € R? with 0 < z and 0 < y < =, equipped with the £;
metric and the median inherited as a median subalgebra of (R?,¢1). Walls are either (finite-
length) vertical line segments or (infinite) horizontal rays. We colour W with two colours
V (vertical) and H (horizontal) accordingly. We add an artificial =-maximal colour S with
H,V £ S. The colours H,V are not E—related. This colouring has all of the properties
from Definition except , and it fails to have the tangible filter property: there is
a subspace, namely the horizontal axis, crossing exactly the vertical walls, but there is no
subspace crossing exactly the horizontal walls. O
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3.2. © Orthogonal poset-colouring, tangibility, and finite depth. Let (X,d;, ) be a
median metric space. As usual, we let W be the set of walls, H the set of halfspaces, and
equip H with the measure fio; see Section

In our application to asymptotic cones of hierarchically hyperbolic spaces, we will be
working with a median space with a pre-existing poset-colouring (in fact, even the filters oy
will come from "naturally occurring" subspaces in that setting). However, one can construct
a poset-colouring in much more generality, namely an orthogonal poset-colouring.

The next definition abstracts the useful properties of an orthogonal poset-colouring. The
actual construction occurs in the next subsection.

Definition 3.7 (Orthogonal set, orthogonal poset-colouring). Let (F°,Z) be a partially
ordered set, and let L be a symmetric relation on § , and suppose that the following hold
for all U,V,We g :

U £ U;

& has a unique =-maximal element;

ifUc=Vand VL W, then U L W;

(Wedges.) if W = U, V, then there exists a unique E—maximal element that =—
precedes both U and V, i.e. there exists U A 'V £ U,V such that for all W= U,V
we have that W £ U A V;

e (Clean containers.) for all U € § such that there exists V with V L U, there
exists UL € § such that for all V L U we have that V = Ut and U+ L W if and
only if W &£ U;

e (Nesting is determined by orthogonality.) U = V (resp. U = V) if and only
if the set of W for which V. L W is contained (resp. properly contained) in the set
of W’ for which W/ L U. In particular, if nothing is L-related to V, then V is
the unique C=-maximal element, and if there exists W L V, then V+ = Ut (resp.
V4 U')if and only if UZ V (resp. U V).

A set (§,C,

W — § where:
e (§',=, 1) is an orthogonal set;

e for all h,d € W, the walls ©, h cross if and only if Col(h)LCol(d).

is an orthogonal poset-colouring . O

1) with the above properties is called orthogonal. A poset-colouring Col :

Here are some important combinatorial properties of an orthogonal poset-colouring.

Lemma 3.8. Let (X,dq, ) be a median metric space and denote by W the set of walls. Let
Colp : W — (Sl, C, L) be an orthogonal poset-colouring. Then,

e UL =U forallUe gl;

e if UV, then Wy € Wy

Proof. By the definition of orthogonal complements, we have U = (U+)t. Indeed, ULU".
Observe also that ((U+)+)+ = U'. Indeed, the right side is orthogonal to (U+)* and hence
nested in the left side. On the other hand, since U = (U1)*, we have UL((UH)1)*, so
(UHH*r=uh

Suppose that U = (UL)+. Then, taking orthogonal complements and using that orthog-
onality determines nesting, we get UL & UL, which is impossible. Hence U = (U1)L.

Suppose now that U = V. Since orthogonality determines nesting, we have proper con-
tainment of orthogonal sets and so there exists W € Sl such that W L U and W £ V.
Since in an orthogonal poset-colouring, orthogonality of colours is determined by crossing of
walls, we have that each wall in Wy crosses each wall in Wy and there exists he Wy that
does not cross a wall in Wyy. It follows that Wy < Wy O
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Remark 3.9 (Joins, and wedges of sets). Let (3, =, L) be an orthogonal set such that any
C-chain has a minimal and a maximal element. Suppose that {U;};c; = & has the property
that there exists V such that U; £ V for all . Then the wedge property and fact that any
chain has a minimal element implies there is a unique E—minimal such V, called the join
V,; U; of the U;.

On the other hand, if U; are such that there is some V with V = U; for all 4, then let W
be the join of all possible such V, i.e. W is E—minimal with the property that it contains
every V that is contained in all U;. Now, since we could replace W by W A U; for any 1
and retain the latter property, we see that W = Uj; for all . So W is the unique maximal
W that is nested into each Uj, and it is sensible to refer to W as /\; U;. In practice, finite
depth will enable us to talk about \/, U; and A, U;. O

Remark 3.10 (Verifying poset-colourings using wedges and clean containers). Given an
orthogonal set (F°,=, 1) and a map Col : W — §', the "wedges" and "clean containers"
property make it easier to verify that Col is a poset-colouring, at least when the wedge
operator is defined for arbitrary subsets of § . ie. for any {U;}; & for which there is some
V with V € U; for all 4, there is a unique E-maximal such V, denoted A; U;. Remark
describes one situation in which this occurs.

Suppose that we have verified that each Wy is inseparable, as demanded by Definition
and that h, o cross if and only if Col(h).LCol(%), as in Definition Then Col is actually
an orthogonal poset—colouring. The remaining things to check in order to verify this are
conditions (III), (V) from Definition [3.1]

But the Wedge property implies Definition [3.1] m . Indeed, if A is an inseparable set of
walls with fio(A) > 0, and Col(A) € U, V, then Col(A) E UAV = W. So, HanHw = Hu,
so that intersection has positive measure, and W & U,V by the definition of the wedge, and
every wall in A has colour nested in W.

Similarly, the clean containers property implies Definition . Indeed, let U,V be
colours and let A, B be inseparable sets with all elements of the former crossing all elements
of the latter. Assume Col(A) £ U,Col(B) = V For each a € A, we have that Col(a) C
Col(b)* for all b e B, so we take U’ = Nies Col(b): A U. Also, let V! = ;5 Col(b).

Then Col(A) = U',Col(B) & V', as requlred by Definition [3.1] E

Moreover, U’LV’. Indeed, for any b € B, we have Col(b) LU’ since U' = Col(b)*. But
V' = Col(b), so U'LV’. So, every wall whose colour is nested in U’ and every wall whose
colour is nested in V' have orthogonal colours, and hence the walls cross. Thus Col is indeed
a poset-colouring. O

Before proceeding to construct orthogonal poset-colourings, we illustrate one of their pur-
poses with Theorem [3.13: an orthogonal poset-colouring has the property that finite depth
implies the tangible filter condition. This will not be needed for the application to asymptotic
cones of hierarchically hyperbolic spaces.

Example [3.11is an example where finite depth fails.

Example 3.11 (Staircase). Modify the median space X from Example so that it consists
of the union of the squares lying between y =  and y = 0 in the standard tiling of R? by
2—cubes (an infinite staircase). This is again a median metric space — and also a CAT(0)
square complex — and each wall is parallel to exactly one hyperplane. Notice that the infinite
staircase is a median subalgebra of R? but not a median convex subspace.

Colour the walls according to the hyperplanes (i.e. the colour of a wall is the unique
hyperplane to which it is parallel), again with a trivial T—relation (one can insert an artificial
C—maximal element). This is now a finite-depth poset-colouring, and it satisfies the tangible
filter condition.
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Declare walls to be orthogonal if they cross. This is not an orthogonal poset-colouring,
because it fails the clean containers condition.

On the other hand, in this example, the orthogonal poset-colouring constructed in Sec-
tion does not have finite depth but does satisfy the tangible filter condition. O

Example 3.12. The CAT(0) cube complex illustrated in Figure @ has an orthogonal poset-
colouring of the walls, described in Section below. The reader can check that this or-
thogonal poset-colouring has infinite depth, and does not have the tangible filter property.
Indeed, the colour of the it" horizontal wall is the set of the first ¢ horizontal walls, and the
join of these colours (i.e. the =—minimal colour E-larger than all of them, which is just the
set of all horizontal walls) witnesses failure of tangibility since there is no convex subcomplex
crossing exactly the horizontal walls.

The difference with Example[3.11is the following. In that example, the join of the colours
associated to "horizontal" walls is just the unique maximal colour, whose associated filter is
tangible. In this example, the join of the horizontal (blue) walls is non-maximal, since it is
orthogonal to the colour of each purple wall. And its associated filter is not tangible. O

Wk

NN N N

U;

P

FIGURE 6. CAT(0) cube complex of infinite depth, whose orthogonal poset-
colouring fails to satisfy the tangible filter condition.

Theorem 3.13 (Finite depth implies tangible for orthogonal poset-colourings). Let
(X,dy, ) be a complete, finite rank median metric space and let W be the set of walls.
If there exists an orthogonal set (§,Z, L) and an orthogonal poset-colouring Col : W — §
of finite depth, then Col satisfies the tangible filter condition from Definition [3.5]

Proof. Let U € §. Let Wy be the set of walls with colour nested in U and oy be the
associated filter as in Definition Let xo € X be a fixed basepoint. Recall that we need
to show that fio(oy — 0x,) < .

First suppose that U is the unique E—maximal element of §. Then Wy = W, the set of
all walls. So oy is the empty set of halfspaces, and we are done.

So, assume that U is not E-maximal. Consider the set oy — o0x,. This is the set of
halfspaces u such that
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e the wall % associated to u is not in Why;
e some wall h € Wy satisfies h < u or h* < u;
e X0 & u, i.e Xg€u*.
The set oy — 0x, is partially ordered by inclusion. The following claim about this partial
order is the first place where we need the finite rank assumption.

Claim 1. Let u,v € oy — 0x,, and let 4,0 respectively denote the associated walls. Then
one of the following holds:

® U C v
° U C Uy
e 4, and U cross.

Hence oy — 0x, can be written as a disjoint union of at most N chains in the partial order
<, where N is the rank of (X, ).

Proof of Claim[1l Suppose that 4,9 do not cross.

First suppose that u m v # ¢ but neither u nor v contains the other. Then u* nv* = ¢,
contradicting that xg € u* n v*. So, either u < v or v < u, in which case we are done, or
unov = . Assume the latter. Then xg € u* N v*, while we have walls ﬂ, w such that, up to
relabelling halfspaces, h < u,w < v, and ﬁ, w € Wy. This contradicts inseparability of Wy
since 1, v separate iL, w. Hence u,v are S—comparable.

Hence C—antichains have cardinality at most N, by [Bowl3, Proposition 6.2]. So the
“hence” part of the claim follows from Dilworth’s theorem [Dil50]. O

By the Claim, there exists £ < N and S—chains Cy, . .. ,C;, whose disjoint union is oy — o, .
For each i < k, let C; be the inseparable closure of C;, defined in |Fio20, Section 2.1]: C; is
the set of all halfspaces b such that for some a,c € C;, we have a < b < ¢. Note that C; is
contained in oy —0x,. By construction, C; is inseparable and hence fio-measurable by [Fio20),
Lemma 3.9).

Suppose that fio(oy — 0x,) = 00. Then, without loss of generality, fio(C;) = oo, since

OU — Ox, is the union of the Enitely many measurable sets C;. (Recall that oy — oy, = U;C;,
and for each ¢ we have C; € C; < oy — 0x,.)

Claim 2. We can choose a sequence of halfspaces {h,} in oy — 0x, such that

e hyir1 S hy, for all n e N, and
o the inseparable set H,, of halfspaces h such that xg € hi < h* and h,, < h satisfies
fio(Hy) > n.

Proof of Claim[2 By [Fio20, Corollary 2.27| (which hypothesises completeness and finite
rank), there is a countable chain {hy},>1 in C; that is cofinal in C;.

For each n > 1, let H,, be the set of halfspaces h such that xo € hf < h* and h,, < h.
Then H,, is inseparable (hence fio-measurable) and H,, Ci.

Observe that fio(#,,) is unbounded as n — oo, by cofinality of {h,} in C;, the definition
of the inseparable closure, and the fact that fio(C1) = o0. So, we can pass to a subsequence
with the desired properties. O

By definition of oy — ox,, for each n there exists w, € Wy such that w, < hy, (up to
relabelling the w, halfspaces). Hence w, < h; for all i < n. Let W, be the set of walls
crossing hy,.

Claim 3. For m < n, we have W,, n Wy € W,, n Wy. Moreover, for all m € N there exists
n(m) > m such that the preceding containment is proper whenever n = n(m).
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FiGURE 7. Proof of Theorem [3.13.

Proof of Claim[3 If 4 crosses hum and does not cross iLn, then # is separated from w, by
hn, so by inseparability of Wy, we have 4 ¢ Wy. This proves the first assertion, i.e.
Wi 0 Wy € W, n Wy for m < n.
Suppose for some m € N that
Wm M WU = Wn (@ WU

for all n = m. Then we can take w, = w,, for all n = m. Thus the set of halfspaces
separating xg from w,, includes h,, for all n > m, and hence includes all subsets of the form
Hn,n = m. Hence H(xg, wy,) has infinite measure, contradicting that every point in w,, lies
at finite distance from xg. This proves the second assertion. O

In view of the previous claim, we can pass to a subsequence and assume that W,, n Wy <
Wat1 n W for all n. (The subsequence is obtained by redefining ha to be hy, (1), hs to be
hn(n(l))a etc.)

Note that if & € W,, then @ crosses h,, by definition, so C’ol(f;)LCol(an) by Defini-
tion Hence W,, < WCol(izn)L' (To see the latter containment, note that if o € W,,, then

Col(0) LCol(hy) implies Col(8) € Col(hn)*, s0 0 € Wy, y0-)

On the other hand, if ¢ is a wall with Col(9) = Col(hy)*, i.e. Col(0)LCol(hy,), then by
the same definition, v and ﬁn cross. Hence v € WCol(izn)l = W,.

The claim and the preceding discussion show that

Weottyt Y WO S Wei(i i) 0 WU
By the Lemma [3.14 below, we thus have:
Col(hp)* A Uz Col(hpy1)t AU
for all n.

This contradicts finite depth, so oy must be tangible. O
Lemma 3.14. Let (§°,=, 1) be an orthogonal set and Col : W — § an orthogonal poset-
colouring. Let U,V € § . Then

e Wy € Wy implies U V.
o I[fU AV is defined, i.e. if there exists W that is nested in both U and V, then
WU/\V = WU M Wv.

Proof. 1If V is the unique =—maximal element, then the first assertion holds automatically,
so suppose not. Then by Definition V1 is defined. By the same definition, every wall in
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Whs crosses every wall in Wiy1, so if Wy © Why, another application of the definition shows
that ULVL, ie. V- = UL, Yet another application of the definition then shows U = V.
Now, if U = V, then Wy = Wy, so if the containment in the statement is proper, so is the
nesting. This proves the first assertion.

Now suppose that U A V is defined (so as to prove the second assertion). Suppose that
@ is a wall with Col(a) £ U A V. Then Col(d) = U, so by definition, & € Wy n Wy.
Hence Wuy,v € Wu n Wy. On the other hand, if Col(a) & U and Col(u) E V, then
Col(u) = U A V, which implies the other containment and hence concludes the proof of the
second assertion. O

3.3. © Existence of orthogonal poset-colouring on median spaces. We now construct
an orthogonal poset-colouring for median metric spaces, called the canonical orthogonal poset-
colouring. For our applications, we have in mind the case of a complete, connected, finite-rank
median space, but the reader is also encouraged to have in mind the example of the median
metric space consisting of the O—skeleton of a CAT(0) cube complex. The reader familiar with
the factor system construction in [BHS17bl Section 8] might notice a resemblance between
that construction and the one in this section in the case of cube complexes.

Fix a wall 4. Recall that W(u) is the set of walls crossing 4. (Recall that 4,0 cross if
every halfspace associated to one intersects every halfspace associated to the other.)

Definition 3.15 (The set §;). Let & be the set of all nonempty sets of walls of the form
Mic; W(@;), where {ii;}ies is a collection of walls. We adopt the convention that W e  —
it is the intersection of sets W (1), taken over an empty set of walls 4. ]

If U € Fp, then U is inseparable, and therefore fio-measurable by [Fio20, Lemma 3.9].
Indeed, we have:

Lemma 3.16. Let 4,0 be walls that both cross a wall w. Suppose that h is a wall separating
w,0. Then h crosses w. Hence each element of 36 1s inseparable.

Proof. We can label halfspaces so that v < h < u. Choose z,y € u* N w,u* N w* and

zitevnw,vnw* Then z € h* nw,y € h* nw*,z€ hnw,tehnw*, so h,w cross.
This shows that W(w) is inseparable. Since arbitrary intersections of inseparable sets are

inseparable, every set in 3’6 is inseparable. O

We will use §; to build an orthogonal set, starting with the following orthogonality and
nesting relations on 3’6:

Definition 3.17 (Orthogonality in Fg). Let U,V € ;. We write /L) to mean that every
wall in U crosses every wall in V. g

Definition 3.18 (Nesting in F;). We say that U = V if U < V. O

Immediately from the definitions, we have the following for all U, V, W € SE):

. . . . . .
C is a partial order on §; and W is the unique maximal element.
E and L are mutually exclusive, since no wall crosses itself.
1 is anti-reflexive (since no wall crosses itself) and symmetric.

Ityci and ULV, then Y 1V.

Remark 3.19 (Wedge property in 36) Let U,V € 36. Suppose that there exists ) € 3(3
with Y EU and Y = V.
Write

U = \Wi)

iel
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and

V= [W().

e
Then
UV =[] W) nW(Dy),

el jed
soUnNnVe SE). Since ) is contained in U NV, we have Y T U NV € S(.). So, we can define a
wedge operator on 86 as in Definition byU AV =UnNV. O

Remark 3.20. We will not need the following, but we observe that we can take wedges of
arbitrary collections of subsets in S('], not just pairs, just by taking intersections. O

Lemma 3.21 (Clean containers). Let U € § be such that there exists V € Fo with ULV.
Then there exists U+ € 36 such that Ut 1U, and Y € S('] satisfies Y LU if and only if Y = U+
Moreover, for allU,V, we have that U =V implies V& = UL, and in particular

Z/[L _ ((UL)L)L.
Proof. Write
U = (W),
iel

where {1;};cr is a set of walls. Let

Y= We).
wel
In other words, ) is the set of walls g such that ¢§ crosses every wall in /. By definition,
Y€ -

By assumption, V1U, so every wall in U crosses every wall in V. Hence, V < ), i.e.
YV £ ). Since V is arbitrary, this will show that every element of SE) orthogonal to U is nested
in Y. In particular, Y 1U. Let Ut =y.

Now we prove the "moreover" statement. Suppose that U,V satisfy Y = V, so that U < V.
So, from the definition, we immediately get V= = U1: any wall that crosses all walls in V
must cross all walls in U.

In particular, since U+ LU, we have U = (U)*, so (U*)1) = UL, On the other hand,
letting V = U*, we have VL1V, so V & (VYL ie. Ut = (UHH)E So (UHH)E = ut,

since E is a partial order. O

Now let §; < Fo be the set of U € F, such that either U = W, or there exists V € §, with
Uuly.

Lemma 3.22. Suppose that U,V € S; Then

o ifU AV is defined (i.e. UNV # &) thenU AV € Ty;
o Ut e T providedU # V.

Proof. The second assertion follows from the definition of §; and the fact that ¢ L. For
the first assertion, note that if Y LU, then YL (U A V). O

We would like to use (Sl, C, 1) as our orthogonal set, but it does not necessarily satisfy
the “nesting is determined by orthogonality” condition from Definition

To remedy this, we introduce the following equivalence relation on 31 we write U ~ V
to mean U+ = VL. If W is the unique C—maximal element of 31, then we declare W to be
unique in its ~—class. We let U denote the ~—class of U, and V the ~—class of V, etc.
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Let Sl be the set of ~—class representatives in SI The following lemma defines a section
of the quotient map 31 — Sl, and after proving it, we will therefore think of Sl as a subset

of &1

Lemma 3.23 (E-maximal ~—class representatives). Let U € Sl Then there is a unique
= -mazimal Y € U. If U is not the class of W, then Y has the property that Y = (UY)* for
alld € U. Conversely, any element of the form (VY)*, with V € §], is ©-maximal in its
~—class.

Proof. Let U € U. If U = W, we are done, so suppose not. Then U~ is defined, and we have
Uc UHE TFV ~ U, then (UH)E = (V1)1 proving the first assertion.

Now let V € ). Let ¥ = (V1)L Then Y ~ V by Lemma [3.21. Also, V € Y, and for
any V' ~ V, applying the orthogonal complement operation twice to V' gives V. So Y is
C—maximal in the ~—class. O

Thus we can view Sl as the subset of 31 containing exactly those elements that are =—
maximal in their ~—class. So, S’l contains W and inherits the = and 1 relations from
31

By the preceding lemma, if U € 3l, then we can write U = (Vi)L for some V. Hence
Ut = (VHH4, so by Lemma @, 3§ inherits the clean containers property.

Observe that (U1)t n (VH)* = (((UL)l&Vl)L)L)L, by Lemma so the wedge
property persists in Sl in view of Lemma [3.23. We now check that we have found an
orthogonal set:

Lemma 3.24. The triple (F|,Z, L) is an orthogonal set.

Proof. We have already seen that | is a symmetric, anti-reflexive relation and E is a par-
tial order with a unique maximal element. Moreover, = and 1 are mutually exclusive and
U = VIW implies UL W. The wedge and clean containers properties from Definition
have already been verified, so it just remains to check that nesting is determined by orthog-
onality, i.e. if U,V € Sl, then Y+ = U+ implies U = V (the other direction was checked in
Lemma m

Suppose that U = (AL)* and V = (B4)* and V! = Y*. Then by Lemma @, Bt AL
so by another application of the same lemma, U = V), as required.

Now we take care of the proper nesting part of the "nesting is determined by orthogonality"
condition. Suppose that V* = Y+, Then U = V, by the preceding discussion, and U # V
since they have different orthogonal complements.

Conversely, suppose that & = V. We have by the preceding discussion that Y+ = ¢/+. We
need to show that V* # UL, Writing U = (AY)* and V = (B+)*, we have by Lemma
that Y+ = U implies AT = B+, from which, taking orthogonal complements once more, we
get U =V, a contradiction. O

Now we can prove the main result:

Proposition 3.25 (Canonical orthogonal poset-colouring). Let (X,d1, ) be a median metric
space and denote by W the set of walls. Then there is an orthogonal poset-colouring Col] :
W - (gj_v ;7 J—)

We call the orthogonal poset-colouring described in this section, the canonical orthogonal
poset-colouring of a median space.

We emphasise that in the proposition, the poset-colouring may have infinite (even un-
countable) depth.

We need one more lemma:
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Lemma 3.26 (Crossing pair has an abstract square). Let ﬁ, 0 be crossing walls. Then there
erist U,V e Sl such that the following hold:

e ULV. A
o There exist U € U,V € V respectively containing h, .

U,

1%

FIGURE 8. Setup of the proof of Lemma, (3.26.

Proof. Choose w, x,y, z respectively lying in hnov, hnv*, h* nv*, h* nv. By [CDH10, Lemma
2.26], we can assume that w,x,y, z form a rectangle, so in particular h separates w, x from
Y, z, and 0 separates w, z from x,y. See Figure

Let V = W(w, z | z,y) be the set of walls separating w, z from x,y and let R = W(w, x |
y,z) be defined analogously. Each wall in R crosses each wall in V, since w, z,y, z form a
rectangle. Note that heR and 6 € V.

Let U, = (Nger W(W@) and let Uy = (Nyep, W(). Then U, Us € Ty, by definition.

Now, 0 € Uj,. Indeed, © crosses every wall in R.

Let Y = ﬂﬂe“a W(w). Then since h € R, we have that h crosses every element of U, so

hel. So) is nonempty, and therefore by definition lies in SE). By construction, Y 1U;, so
both Y,U; € F.

Let V be the ~—class of ; and let U be the ~—class of }). Then ULV, by the definition
of Y. Moreover, heYand v e U;,, as required. O

Now we can prove the existence of orthogonal poset-colourings.

Proof of Proposition[3.25 1f X is a single point, then the proposition holds vacuously since
there are no nontrivial walls, so we can assume the set of walls is nonempty.

Define a map Col| : W — Sl as follows.

Let w = {w,w*} be a wall. Let I(w) be the set of walls @ such that w crosses 4. So,

Uy = [ W)
ael(w)

lies in 36 and contains w. If I(w) = ¢, then by our convention on intersections over the
empty index set, Uy = W. To see that Uy € S('), refer to Definition |3.15 and observe that Uy
is nonempty since it contains w.

If I(w) # &, then let Y = (¢, W(@). Then Y 1Uy, and Y is nonempty since it contains
I(w). Thus Uy € F;.-
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Therefore, we can sensibly define Col (w) € Sl to be the ~—class of Uy. In particular, if
I(w) = &, i.e. W does not cross any walls, then Col ) () is the ~—class of W.

We have already checked that (Sl, C, 1) satisfies the parts of Definition not involving
the map Col; . It remains to complete the proof that Col; is a poset-colouring, i.e. to check
the the four conditions in Deﬁnition and to check that, if Col; (w)LCol, (0), then @ and
¥ cross, and conversely, if h and © are crossing walls, then their colours are orthogonal.

Suppose that there exists a set A = U,V as in Definition . Then it suffices to
take as a family the wedge W = U A V. Indeed, by definition, W = U, V; by Remark [3.19,
we have that Col(A) = W. Furthermore, since the set of halfspaces associated to A has
positive fio-measure and since the halfspaces associated to W contain those associated to A,
it follows that they also have positive fio-measure. This verifies Definition ..

Suppose that © and h cross. By Lemma @, we have U,V € &1 such that h € U and
v eV, and ULV. We can write

U =(\W(i),
el
so since h € U, we have I I(h), and hence Coll(ﬁ) £ U, where U is the ~—class of U.
Similarly, Col} (8) = V. So Coly(h)LCol, (%), and in particular Col, (h), Col. () are not
C-related. R A

Next, suppose that h,v,4 are walls such that Coly(h),Coly(0) E V and 4 separates

h from . Let V e F1 be the unique =-maximal representative of its ~—class (given by

Lemma . Writing
V= W),
i€l
we have that 9 and h both cross every ¢;. Since 4 separates 0, ﬁ, it follows that @ crosses ;.
Hence Col (1) E V.

Next, suppose that U,V € S]_ Suppose there exist sets A, B of walls with Col; (A) £ U
and Col | (B) & V. Suppose that all walls in A4 cross all walls in B, and A, B are nonempty.

Let Uy € 31 be the set of walls crossing all walls in B. Note that A < U,. Also every wall
in B crosses every wall in U4, by definition, so B < L{j.

So Ua,Ux respectively contain A, B and are orthogonal in §;. Let U” and V” be their
~—classes, so U” L'V”. To conclude, just let U’ = U” AU and let V' = V” A V. This verifies
Definition .

Finally, if Col | (6)LCol (h), then since Col (9) is represented by a set of walls containing
© and vice versa, the definition of orthogonality implies that ¢ and h cross. Conversely, if ©
and h are crossing walls, then we saw above that COZL(;L)J_COZL(@).

This completes the proof that C'ol; is an orthogonal poset-colouring. U

We next show that the canonical orthogonal poset-colouring is minimal and essentially
unique in the following sense.

Proposition 3.27. Let (X,d;, ) be a median metric space and denote by W the set of
walls. Let Coly : W — (Sl, C, 1) be the canonical orthogonal poset-colouring as described in
Proposition and let Col', - W — (Sl/, =/, L") be an arbitrary orthogonal poset-colouring.
Let gl’p’ be the subset of elements V € Sl/ such that Wy # & and consider (Slyp,, c, 1)
with the induced relations.
Then, there is a bijective map f : (Sl’p,,E,J_') — (§1,E, L) that respects the relations,
i.e. UL (resp. E)V if and only if f(U) L (resp. ©)f(V).

Proof. Let V' € Slm/.
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Suppose that V' is not the E-maximal element. Then, since orthogonality determines
nesting, it follows that there exists W' e SL " such that W’ 1LV

Since J_ is an orthogonal poset-colouring, there exists V'te F Lp . Since V/* L V', from
the definition of orthogonal poset-colouring we have that each Wall in W1 crosses each
wall in Wyr. Conversely, if a wall w crosses each wall in Wy, then from the definition of
orthogonal poset-colouring, we have that Col(w) L V’. Since V' L has nested all W’ e Slm/
such that W' L V', we deduce that W1 is precisely the set of walls that cross each wall in
Wiy

Now, from the construction of the canonical orthogonal poset-colouring, see Definition
@, the set of walls that cross a given set of walls is an element of S]_ Therefore, we deduce
that there exists V& e SL such that Wy,1 = Wy,,. © W. Furthermore, since V6e 3L we
have V14 e Sl From Lemma we have that V1+ = V andso V € 3]_ and since Wy are
the walls that cross Wy, = Wy;1, we have that Wy = Wy

We set that f : S.Lp, — Sl sends the E-maximal element of Sl’p/ to the E-maximal
element of Sl and, in the notation above, V/ to V. From the discussion above, we have that
Wy = Wyeyry for all Ve S’l,p,. It follows that the map f is injective as if f(V') = f(W'),
we have that Wy: = Wy = Wywr) = Ww and since nesting is determined by inclusion
of the sets of walls, we have that V/ = W',

Finally, since
w= U w= U W
Vet ) Vvef(sy,)
and by construction Wy # J for all V € Sl, it follows that f(&l p/) = Sl and so f is
surjective.
It follows that f : Sl p, — S’l is a bijection. Since orthogonality of elements in Sl and Sl/
is determined by the crossing of the walls with colours nested in those elements, we have that

U’ L V' if and only if f(U’) L f(V’); furthermore, since orthogonality determines nesting,
we have that U’ = V' if and only if f(U’) = f(V'). O

We also record the following fact about orthogonal poset-colourings.

Proposition 3.28. Let X be a median metric space with more than one point, and let
Col : W — (§°,5, L) be an orthogonal poset-colouring. For U € §, recall that Wy is the
set of walls h with Col(ﬂ) = U and Huy is the set of halfspaces associated to walls in Wy .
Then for all walls h,
maX{ﬁO(HCOl(E))?ﬁO(HC’ol(E)i} > 0;

the above quantity may be infinite. When Col(fz) 1s E—maximal, we take the above to mean

Proof. Let T = Col(h), let T be its ~—class.

First suppose that no wall crosses h. Then by Deﬁnition T is E—maximal, so Ht = H,
which has positive measure since X is not a single point.

Otherwise, some wall crosses h. So, by the definition of an orthogonal poset-colouring,
there exists U € §, and some © with Col(d) = U, such that ULT (and h and © cross).
Let w,z,y,z € X and R,V be as in the proof of Lemma [3.26. Then the sets of halfspaces
assoaated to R and V both have positive measure, since di(w,z) > 0 and di(w, z) > 0. As
in the proof of Lemma @ we have h e R and 6 € V. Every wall in V crosses h so if some
wall @ crosses every wall crossing h, then @ crosses every wall in V. Hence V < Wi, and
therefore Hp1 has positive measure. O
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4. REAL CUBINGS

We now introduce real cubings.

4.1. Definition of a real cubing. In this section, we introduce R—cubings. First we need
some notation:

Notation 4.1 (The ¢;—space associated to a set of based R-trees). Let & be a set, and,
for cach F € §, let (7T°F,dp) be an R-tree (i.e. a 0-hyperbolic geodesic metric space) with
a basepoint 1g. We denote by £1(F) the subspace of [ [peze T°F consisting of those tuples
(XF)pege such that

> d(xF, 1) < .
Feg*

We equip #1(F) with the ¢; metric dy, i.e.

di((xp), (yr)) = ), dr(xp,yr).
Fe3*

Note that we do not impose any cardinality constraint on § . But, in the above definition,
and later, we use the following convention on sums: we are summing over the F € § for
which the corresponding term is nonzero (hence positive). If there are uncountably many
such terms, (xp)p ¢ £1(3°). So we are really only interested in points for which the set of
such F is countable, and then the infinite sum can be interpreted in the usual way since the
property of convergence is independent of the order in which we sum the terms, in view of
positivity of the nonzero terms. O

Definition 4.2 (R—cubing). The nonempty set l%jtogether with the collection { :We
T’} of R-trees (T*W,dw), each with a fixed basepoint 1w € T*W is a real cubing index
set whenever it satisfies the following four properties:

(1) (Nesting.) § is equipped with a partial order called nesting. For V,W € §,
we say V is nested in W when V & W. (We emphasise that W & W.)

For each W € §, we denote by S;,V the set of V € § such that V.= W. Moreover,
for all V,W € § with V © W, there is an associated point € T*W. There is
also a map |p¥: T°W — ’T'Vl whenever V& W.

(2) (Orthogonality.) § has a symmetric and anti-reflexive relation called orthogonal-
ity: we write when V, W are orthogonal. Also, whenever VCT W and W_LU,
we require that V1U. If VIW, then V, W are not =—comparable.

(3) (Transversality.) If V,W € § are not orthogonal and neither is nested in the
other, then we say V, W are transverse, denoted V[hW. If VAW, then there are
points @ € T*W and p¥Y € T*V so that the following holds. If UZ V or ULV,
then p‘jTV = p% whenever W e §° satisfies either V.= W or VAW and W +U.

(4) (Finite complexity.) There exists e N U {0}, the complexity of (X, "), so that
any =-chain in § has cardinality at most x . Similarly, any subset of § whose
elements are pairwise orthogonal has cardinality at most .

The nonempty path-connected complete metric space (X|dx) is a real cubing (or R-
cubing) if there exists a real cubing index set E for which the following hold:

(5) (Consistency, realisation, isometric embedding) The space X is a subspace of
(1("), and dx is the restriction to X of the ¢; metric.
Moreover, X has the following property, where |7r_W|: 01(§") — T*W is the natural
projection for each W e § . A point x € £1(F") belongs to X if and only if
o Tw(x) € Tw(X) for all W e §'; and
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e if VAW, then

min {dW(ﬂ'W(X)7 P%), dV(ﬂ-V(X)7 va)} =0,

and
e if V& W, then

min {dw (mw (%), Py ), dv (v (%), oY (mw (x)))} = 0.

The above equalities are called consistency conditions on tuples in ¢1(F").
We require that for all V, W € §°, we have that py € mw(X) whenever VE W
or VIhW.
(6) (Bounded geodesic image.) If V& W and x,y € X, then myv(x) # 7y (y) only
if the geodesic in T*W from mw (x) to mw (y) contains pyy .

We also refer to the pair (X, 3) as a real cubing. This notation implicitly includes all of the
data: R—trees, ps-points and maps, etc.

The space X is complete by hypothesis, but the associated R-trees need not be, even if
(as will be the case in practice), the maps 7y : X — 7°U are surjective. O

Remark 4.3. Real trees were introduced by Alperin and Moss [AMS85] as metric completions
of simplicial trees and in their influential work, Morgan and Shalen [MS84] studied real
trees and groups acting on them as degenerations of hyperbolic spaces, or in other words,
asymptotic cones of hyperbolic spaces. In this first setting, real trees were defined as complete
metric spaces. Later, the definition was generalised to be a 0-hyperbolic space and nowadays
real trees do not need to be complete.

As in the original setting for trees, our main interest is in spaces that are complete for some
other reason, e.g. asymptotic cones of hierarchically hyperbolic groups. For this reason we
require real cubings to be complete metric spaces. This assumption is mainly for convenience
and we believe that, with the corresponding adjustments, it may be dropped (but path-
connectedness must be retained).

For instance, one of the implications of completeness that we use is the fact that real
cubings are geodesics spaces: we show that they are complete, connected median spaces.
However, a path-connected, not necessarily complete metric space X satisfying the rest of
Definition can be shown to be a geodesic space as follows. First, the proof of Lemma [4.7]
below shows that X is a median metric space, without using completeness.

Then, the completion X is again median, by [DKI8, Proposition 6.42]. For each W € §",
the lipschitz projection mw : X — T*W extends to a lipschitz projection mw : X — T*W
between completions, which continues to be a median-preserving map. As a complete, path-
connected median space, X is a geodesic space, and the extended 7w must send geodesics
to geodesics since it is a median homomorphism. But for any pair of points x,y € X, the
geodesic v from x to y in X must remain inside X, since its image in each 7*W must
remain in 7°*W since it cannot contain any valence—1 points (except the endpoints), and the
completion of any R—tree is obtained by adding valence—1 points [AB87, MNQ92|.

But, for our purposes, we will just work with complete R—cubings. O

Remark 4.4. Definition is motivated by the definition of a hierarchically hyperbolic
space (see Part , with a few important differences.

For example, we do not require that § has a unique E-maximal element, although this
will often hold in practice.

Also, in contrast with the definition of a hierarchically hyperbolic space, the hyperbolic
spaces associated to elements of the index set of an HHS structure have been replaced with R—
trees, and various coarse points have become points, coarse equalities have become equalities,
etc. Most importantly, several statements that are axioms in the hierarchically hyperbolic
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space setting have analogues in this setting that are consequences of the other axioms; we
now establish these. O

As we mentioned, real cubings do not require a unique maximal element. However, the
next lemma allows us to assume without of generality when convenient, that the real cubing
has a unique E-maximal element.

Lemma 4.5. Let (X,3") be a real cubing. Then we can modify the index set § by adding a
unique =-mazimal element and obtain an index set T, so that (X, §.,) is a real cubing.

Proof. If & does not have a C-maximal element, we define the set Sm tobe § together with
a new element S, The relations and real trees from § are preserved in Sm Foral Ue §
we declare that U = S and define 7S to be a point p. The p maps are defined as follows:
forall Ue §, pg = p and pISJ is an arbitrary point in 7 U.

Then it is routine to check that § U {S} is a real cubing index set.

Note that adding elements to the index set whose associated real trees are points does not
affect the set of consistent tuples. More precisely, the natural map

[[TU- < []TU

Ue3* Ueg®

sends consistent, £1 points to consistent £1 points bijectively. Since TS is a point, the geodesic
bounded property is satisfied trivially. Therefore, (X,g,,) is a real cubing.

Note that the clean containers property (see Definition persists, and the wedge
property persists (if it held in the first place). ]

The next statement should be compared to the uniqueness axiom (Definition @)
in the definition of an HHS. While they are similar, the following statement is weaker, for
example because it does not imply that {7*W : W € '} contains R-trees of arbitrarily
large diameter even when X is unbounded.

Lemma 4.6 (Weak uniqueness). Let (X, T ) be an R—cubing. Let x,y € X. Ifx #y, then
there exists W € § such that mw(x) # mw(y).

Proof. This is immediate from the definition. O

As an analogue of the fact that hierarchically hyperbolic spaces are coarse median spaces
(see [BHS19. Section 7]), R—cubings are median metric spaces:

Lemma 4.7 (R-cubings are median). Let (X,§ ) be an R-cubing. Fir x,y,z € X. Let
Weg and let@ be the median of mw (x), 7w (y), 7w (2) in the R—tree T*W. Then there
exists a unique = pu(x,y,z) € X such that mw(u) = pw for all W e F".

In particular, (X,dx) is a complete, connected, median, geodesic metric space and |y :
X3 — X is the median operator.

Before giving a detailed proof, we sketch a more conceptually revealing proof. First, equip
HUES' T*°U with the product median coming from the median metrics on the real trees
T°U. Note that £1(F") is a median subalgebra, and in fact a median metric space. So
to prove that X is a connected median space whose median has the property given in the
statement, we just need to show that X is a median subalgebra of £1(F). But each of the
consistency conditions in Definition defines a median subalgebra of 7°U x T*V for some
U, V, and by definition X is the intersection of the preimages of these subalgebras under the
natural projection £ (S) — T7°U x T°V, and hence a median subalgebra. This viewpoint
is explained more fully in Section
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Proof of Lemma 4.7. Fix W € § . For each distinct a,b € {rw(x), 7w (y), 7w (2)}, let [a, ]
be the unique geodesic in 7*W joining a to b (and hence passing through pw).

Since X is path-connected, and 7w is continuous, [a,b] c mw(X). Indeed, any X—path
from, say, x to y is sent by mw to a path in 7*W joining mw (x), 7w (y) and hence containing
[Tw (%), 7w (y)] in its image.

Suppose that VAAW. Then by Definition ., up to switching W,V we have that py
coincides with at least two of the points 7y (x), 7v(y), 7v(z). Hence py = pyv, or the same
holds with V and W reversed.

Similarly, if V & W and py coincides with at least two of mw (x), 7w (y), 7w (z), then
1w = Py-

So, suppose that pw # p¥v. Then p% does not lie on the geodesic between, say, mw(x)
and mw (y), while puw does.

By Definition mv(x) = mv(y) = pv, and each of these points coincides with
v (rw(x)) and pyY (rw(y)). Now, p¥W is constant on each component of mw (X) — {p¥},
and piw lies on a geodesic from 7w (x) to mw (y) and is not equal to p. So pw (pw) = pv-

We have verified that (uw)yyege satisfies the conditions from Definition M, whence
there exists p € X such that mw(p) = pw for all W. The point p is unique by Lemma

u is a median: Given x,y,z € X, let u = pu(x,y,z). Define

S=58(x,y,z) = %(dx(x,y) +dx(z,y) + dx(x,2)).

Define T' = T'(X,y, 2, ) = Yye(x.y,2 9x(a; 1)
For each W € §, define

Sw = S(WW(X)v WW(Y)? ™ (Z))
and
Tw = T(rw (x), 7w (y), 7w (2), 7w (1))
analogously. Since mw(u) is the median of mw (x), 7w (y), 7w (z) in T*W, we have Sw =
Tw for all W, by characterisation (C2) of a median from [Bow16b, p. 6].

From the characterisation of dx as the restriction to X of the #; metric, it follows immedi-
ately from the above that S = T'. Another application of characterisation (C2) from [Bow16b]
now shows that (x,y,z) — p defines a median on X.

Conclusion: Thus far, we know that (X,dx) is a median metric space that is path-

connected and complete by hypothesis. So, by Lemma 4.6 of [Bowl6b|, X is a geodesic
space. O

4.2. p—consistency and nonempty product regions. Another difference between the
definition of a real cubing and a hierarchically hyperbolic space has to do with the fact that for
real cubings, we have assumed the analogue of the HHS realisation theorem (Theorem m
but omitted an analogue of the partial realisation aziom (Definition [10.1.(8)). Nonetheless,
a weaker version of the omitted axiom holds:

Proposition 4.8. Let (X,3") be a real cubing. Let Ue F . Let be the set of x € X such
that v (x) = pY whenever UMV or U & V. Then Py = & only if my(X) is a single point.

The converse of the proposition does not hold. Very typically, we will encounter real
cubings where some 7wy (X) is a single point and Py # J. These U are totally innocuous.
This is why, in Proposition when we discard certain U, without affecting X, to get a
new real cubing structure, we discard only those U with Py = ¢§. Other U stay, even if
7wy (X) is a single point. This flexibility is useful in our applications to asymptotic cones.
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Proof of Proposition[{.8. Suppose U € §° satisfies my(x) # my(y) for some x,y € X, i.e.
mu(X) is not a single point.

Let v be a geodesic in X from x to y, which exists by Lemma [4.7, Since my is a lipschitz
(hence continuous) median homomorphism (the former because of Definition and
the latter by the characterisation of the median in Lemma , the composition my o 7y
is a (continuous) path and in fact an unparameterised geodesic in 7°U from 7y(x) to
mu(y). Hence we can choose t € 7 such that my(t) is an interior point of 7wy o 7, i.e.
Tu(t) ¢ {ru(x), Tu(y)} .

As above, we have for any other V € § that my o+ is (after reparameterising) the geodesic
in the real tree T*V from 7wy (x) to my(y). In particular, v (t) lies on the geodesic in T*V
from 7y (x) to v (y).

We now argue that t € Py, which will complete the proof.

Suppose that V € § satisfies VAU. Then by Definition (the consistency condi-
tion), one of the following holds:

e mv(x) = mv(y) = p¥, in which case, since 7y (t) lies on the geodesic Ty o, we get
mv(t) = py.

e myv(x) # mv(y) so that, up to interchanging the roles of x,y, we have Ty (x) = py
and 7y (y) = pyy. Since 7y (t) # my(y), consistency demands that mv (t) = p.

Now suppose that U & V. The consistency and bounded geodesic image (Defini-
tion @) imply that the geodesic 7wy o~ passes through pg. The point 7y (t) also lies on
this geodesic. So if pg # 7y (t), then consistency and bounded geodesic image imply that
mu(t) € {mu(x), mu(y)}, violating our choice of t. Hence t € Py, and we are done. O

The sets Py — the standard product regions in X — will be examined in more detail in
Section [4.10] in which the name "product region" is justified. For now, we are only concerned
with whether and when these subsets are nonempty.

Definition 4.9 (Nonempty products). The R-cubing (X,§") has nonempty products if Py #
GforalUeF . O

Proposition 4.10. Let (X,§) be a real cubing. Let Sl be the set of U € § with Py #
. Then (X,SI) is a real cubing with nonempty products, where the relations =, 1, h, the
points/maps pe, and the real trees are inherited from (X,§").

Proof. Let X’ be the set of points in £1(F;) satisfying the consistency conditions in Defi-
nition . By definition, (X’,§]) is a real cubing provided X', with the ¢;-metric, is
complete and path-connected.

The natural projection [ [yeze 7°V — HUe&I 7*U induced by forgetting factors in § —F;
induces a 1-lipschitz map X — X', since consistent points in the larger product are sent to
consistent points in the small product, and the property of being finite distance from the
basepoint is preserved. Since 7y (X) is a single point for U e § — 3’1, by Proposition
the map X — X’ is in fact an isometric embedding.

By another application of Proposition every element of X’ uniquely extends to an
element of [ [y,cz+ 7°V whose V—coordinate is the point 7y (X) for V ¢ &1 The consistency
condition is automatic for this extended tuple, so the map X — X' is surjective. Hence X' is
isometric to X, and thus complete and path-connected. Hence (X,SI) is a real cubing, and
it has nonempty products by construction. O

Example 4.11. The reader interested in how empty products can arise should consider the
example where X = R, and § consists of pairwise transverse elements V,,, with 7°V,, =
[n,n + 1] for n € Z, and an additional U, transverse to all V,,, with 7°U a single point.
Define pxzil =n and pgn =n+ 1 for all n. Then Py = ¢&. O
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The preceding proposition says that if we are only interested in X itself, we can assume that
it has nonempty products. In practice, and in particular in our applications to asymptotic
cones, we will be working with real cubings that have nonempty products by construction,
and we will not need to apply the above proposition.

Finally, nonempty products yields the following consequence of the consistency condition

in Definition which will be useful in Section [6.

Lemma 4.12 (p-consistency). Let (X,§ ) be a real cubing with nonempty products. Let
U,V,We§F satisfy

e U V or UAV, and

e UC W or UNW.

Then, if VAW , we have

and if V.C W, we have

mln{dW(ng) p%)v dV(pg> P%V(ng)} =0.

More generally, the above conclusion holds without the nonempty products assumption when-
ever U, V, W are as above and, additionally, Py # .

Proof. Tt suffices to prove the "more generally" statement. Assume Py # J and choose
x € Py. Then my(x) = pY and mw(x) = py. The lemma now follows by applying

Definition to x. O

4.3. Real cubing rank and contractibility. Recall that the rank of X as a median space
is the maximal n € N such that there is a median preserving embedding of an n—cube {0, 1}"
in X.

Lemma 4.13. Let (X,§") be an R—cubing. Then X is a finite-rank median space.

Remark 4.14 (Finite rank in practice). The R-cubings arising later in the paper will often
be (spaces bilipschitz equivalent to) asymptotic cones of bounded-rank coarse median spaces
with uniform coarse median constants. They are thus finite-rank topological median algebras,
by [Bowl3, Theorem 2.3|, and, by modifying the metric in its bilipschitz class (but not
modifying the median), they are finite-rank median metric spaces [Bow18b, Theorem 6.9].
But the preceding lemma says finite rank can be checked directly from the definition of an
R—cubing. O

Proof of Lemmal[4.13. Fix n = 0 and let C be a median algebra isomorphic to {0,1}". Let
¢ : C — X be an injective, median preserving map. Let 0 be the ¢—image of (0,0,...,0),
let e; € C be the vector whose i*" coordinate is 1 and all other coordinates are 0, and let
x; = ¢(e;). .

Let @ # j. Then there exist U;,U; € § such that 7y, (0) # 7y,(x;), and the same
holds with ¢ replaced by j. Let e;; be the vector in C' with 1 in the ¢ and j coordinates
and 0 elsewhere. Let x;; = ¢(e;;). Note that 1(0,x;,%;;) = x; and p(0,x;,%;;) = X, and
,u(xij,xi,xj) = Xij- AISO, H(O,XZ’,X]‘) =0.

Hence 7y, (x;) lies on the unique geodesic in 7°Uj; joining the projections of 0 and x;;.
The same holds in Uy, with my, (x;) replacing my, (x;). On the other hand, the projection of
0 to 7°U; lies on the geodesic joining the projections of x;,x;, and the same holds with ¢ and
J reversing roles. Finally, the projection of x;; lies on the geodesic joining the projections of
Xy Xj.

We claim that U; LUj;. If not, then, up to relabelling, one of the following holds:
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e U; = U;. Then each of 7y, (x;), 7y, (x;) lies on the geodesic joining the other to
7y, (0). This is impossible since 7y, (x;), 7y, (x;) both differ from 7y, (0). Hence
U, # Uj.

e U;AU;. By consistency, up to reversing the roles of i and j, we have pgz =
7y, (Xij) # Ty, (0), since 7y, (x;) lies on the geodesic from 7y, (0) to 7wy, (Xi;).

By consistency, 7y, (0) = pgz But then by consistency, 7y, (x;) = 7y, (Xij),
contradicting that the projection of 0 lies on the geodesic from that of x; to that of
x;. Hence Uj is not transverse to Uj.

e U; © U;j or vice versa. Assume the former. Then p& lies on the 7T°U;-geodesic
joining the projections of 0 and x;;, by consistency and bounded geodesic image
axioms. So, by the same axioms, either my, (x;) coincides with the U;—projection of
0 or x;;, contradicting either that 7y, (x;) lies on the geodesic joining the projections
of 0 and x;, or that 7y, (x;;) lies on the geodesic joining the projections of x; and x;.

Hence we have found n pairwise orthogonal elements Uy, ..., U, of § , whence n < x" by
the finite complexity axiom. So, the rank of X as a median space is at most y~ < 0. O

From the preceding, and [Bowl6b, Theorem 1.1], we get:

Corollary 4.15 (Contractibility). Let (X,§ ) be an R—cubing. Then X is bilipschitz home-
omorphic to a CAT(0) space, and is in particular contractible.

4.4. © Discrete real cubings. We next show that discrete real cubings are precisely CAT(0)
cube complexes. We say that a real cubing (X,S) is discrete if each T*W, W € § is a
simplicial tree, and p¥v is a vertex of T*W whenever it is defined and a single point.

Theorem 4.16. Fvery discrete real cubing is median-preservingly, £1—isometric to a finite-
dimensional CAT(0) cube complex. Conversely, every finite-dimensional CAT(0) cube com-
plex is median-preservingly £1—isometric to a discrete real cubing.

Proof. In Example we will show that CAT(0) cube complexes are discrete real cubings
(the associated trees are single edges and the p—points are vertices), so it suffices to show the
converse.

If (X,§") is a discrete real cubing, then it is a finite-rank connected median subalgebra in
a (possibly infinite) product of simplicial trees, by Lemma and Lemma Hence X is
a finite-dimensional CAT(0) cube complex. O

The preceding theorem is not much more informative than the fact that any CAT(0) cube
complex is an isometrically embedded median subspace of an (infinite) cube. Later we show
that one gets a more useful real cubing structure on X when the orthogonal poset-colouring of
the hyperplanes in X has finite depth, and we relate this to conditions in [BHS17b| ensuring
that X is a hierarchically hyperbolic space.

4.5. Convex subspaces and gates. We now study convex subspaces of R—cubings.

Definition 4.17 (Convexity). Let (X, ) be a R-cubing. We say that Y < X is convex if
the following hold:

e mw(Y) is a subtree of 7w (X) for all W e §';
e if x € X satisfies mw (x) € 7w (Y) for all W e §, then x e Y.

We will almost always be interested in convex sets that are also closed. O
Lemma 4.18. Let (X,§") be an R—cubing and let ju be the median on X from Lemma .

Then' Y < X is convex only if Y is median-convez, i.e. u(y,y’,x) €Y whenevery,y’ €Y
and x € X.
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Proof. Suppose that Y is convex. Fix y,y’,x as in the statement and let i be their median.
For each W € §°, the point pw lies on the geodesic from 7w (y) to mw(y’) and hence in
7w (Y), by the first condition in Definition Hence, by the second condition, peY. O

The next lemma reflects a general fact about median metric spaces:

Lemma 4.19 (Gates in R-cubings). Let (X, &) be a R-cubing and let Y < X be closed and
convez. Then there is a 1-lipschitz retraction gy = g : X — Y| Moreover, for all x € X and
Ue g, the point mu(gy(x)) is the closest point in the subtree my(Y) < T*U to my(x).

Proof. By the preceding lemma, Y is median convex in X, and hence there is a unique map
gy : X — Y such that dx(x,g9y(x)) = dx(x,Y) for all x € X. The gate map gy is a
retraction by definition and is always 1-lipschitz [CDH10, Lemma 2.13].

Let x € X. For any y € Y, we have a geodesic 7y from x to y passing through gv(x).

Fix W € §". Then for any y € Y, we have that mw o 7y is (after reparametrising) a
geodesic of CW, since mw is a median-preserving map. So, for any point p € mw(Y), we
have that pw (mw (x), 7w (gy (x)),p) = 7w (gy(x)). Hence mw(gy(x)) is the closest point
of Tw(Y) to mw(x). O

We note the following converse:

Lemma 4.20 (Gated implies convex). Let (X,§ ) be an R-cubing and let Y < X have
the property that there is a 1-lipschitz retraction g : X — Y satisfying the conclusion of
Lemmalf.19 ThenY is conver.

Proof. Let U € § . Since g is continuous and X is connected, Y is connected. Continuity
of my implies that 7y (Y) is connected, i.e. a subtree of 7°*U. Suppose that x € X satisfies
mv(x) € mv(Y) for all V. Then by hypothesis, g(x) has the same image in 7°V as x,
for all V, so Lemma implies that g(x) = x. Hence x € Y. Thus Y is convex, by
Definition 4.17. O

One can also define convex hulls from the R-cubing viewpoint, and relate this to the
median-convex hull.

Definition 4.21 (Convex hulls). Let (X, &) be an R-cubing, and let A = X. Then convez
hull [Hull®(A)|of A is the intersection of all closed convex subsets of X that contain A. Let
Hull}(A) be the intersection of all closed, median-convex subsets containing A. O

Lemma 4.22. Let A < X. Then Hull*(A) = Hull(A).
In particular, for all x,y € X, the subspace Hull®*({x,y}) and Hull}({x,y}) coincide with
the median interval between x and y, i.e. the set of all z with p(x,y,z) = z.

Proof. Let M be a closed convex set containing A. By Lemma [£.18, M is median-convex
and closed. So Hull](A) < Hull*(A).

Conversely, suppose that M > A is median-convex and closed. Then M admits a gate
map g : X — M. Since g is continuous and surjective and 7w is continuous for all W € §°,
mw (M) is connected, and hence a subtree. Moreover, since mw takes the median p to the
median pw, and g is characterised by the fact that u(y,x, g(x)) = g(x) whenever x € X and
y € M (see e.g. [Bow20, Section 4|), we see that mw(g(x)) is the closest point of mw (M) to
mw (x). Hence, by Lemma[£.20, M is convex. Hence Hull{(A) < Hull*(A).

The statement about median intervals follows immediately from the first part of the lemma,
once we recall that the median interval between x,y is exactly Hull]({x,y}) (e.g. [CDHIO0,
Corollary 2.15] combined with the face that any closed median-convex set containing x,y
contains the median interval). O

The final property of convexity established here is:
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Lemma 4.23. Let (X,§) be an R—cubing. Let Y < X be closed and conver. ThenY is an
R—cubing.

Proof. For each U € §°, let 7;°U be the image of 7°U under closest-point projection to
closure of the subtree 7y (Y). The indexing set in our new R-cubing structure will be §,
and 7;°U will be the R—tree associated to U. Given U,V transverse, let (p')¥ be the image
of p¥ under the gate map 7°V — TV, and define (p')¥ likewise when U & V. In this
case, let (p’ )g be obtained by composing the above closest-point projection to my(Y) with
pg. It is now easily verified that this data determines a R—cubing structure on Y. O

The preceding properties mirror statements about hierarchically quasiconver subsets of
hierarchically hyperbolic spaces, in [BHS19| Section 5|.

4.6. © Motivating examples. We now discuss some basic examples of real cubings.

Example 4.24 (Finite products of R-trees). Let § be a finite set, and for each U e ', let
T°U be a (based) R-tree. Let d be the empty relation on §, let = be the trivial reflexive
relation, and declare ULV for all distinct U,V € § . Then (HUES' T°U,§") is an R—cubing.

In particular, if the R-trees are lines, we see that (R”,§ ) is an R-cubing for any n > 0,
where R" is given the /1 metric. O

Example 4.25 (Cubings are R—cubings). Let X be a finite-dimensional CAT(0) cube com-
plex with base O—cube zg. Let § be the set of hyperplanes. For each He §°, let 7°H be a
1-cube dual to H, which we identify with [—%, %] in the following way. Let HT be the two
halfspaces of X associated to H, and identify i% with the O-cube of T*H lying in H*. We
base T*H at i% according to whether zo € HE.

Declare H1H' if H,H’ cross (i.e. they are distinct and have nonempty intersection).
Otherwise, if H # H', declare HhH'.

Given transverse (i.e. disjoint) H, H’, let pH, be +3 if H < (H')*.

Let Y < £1(F") be the subspace consisting of all consistent tuples (yr)geze- So. (Y,§")
is a R—cubing (with trivial = relation).

We can now define an isometric embedding (X)(O) — Y as follows, where (X)(O) is equipped
with the graph-metric from (X)) (recall that this means that the distance between z,y €
(X)(O) is the number of hyperplanes separating z,y).

Given a 0—cube z, and a hyperplane H, let xyg € 7°H be i% if z € HE.

If H,H' are transverse, then either H separates x from H’, or H',z lie in the same
halfspace of X associated to H. In the later case, zy = pg/, and in the former case, H’
does not separate H, z, so pg, = xp. Hence the tuple (xg) is consistent, and thus defines a
unique point y(z) € Y.

By definition, if He § and z,2’ € (X)), then dy(ru(y(z)), 7u(y(z"))) # 0 if and only
if H separates x,2’, so  — y(x) defines an isometric embedding. This map can be extended
to the open cubes of X to produce an #;—isometry X — Y, when X is given the piecewise—{1
metric from, e.g. [Mield]. In other words, finite-dimensional CAT(0) cube complexes are
R-cubings. (Note that we need finite dimension to ensure that the finite complexity axiom
is satisfied.)

Because of the lack of nesting and the way the R—trees and projections were defined, this
example does not exhibit an important phenomenon that one can see in more general R—
cubings: the set Y of consistent tuples is in this case contained in the set of points (zp)
such that gy # (zo)u for only finitely many values of H. Indeed, let HhH’. Without loss
of generality, pg, = % and pg, = —%. If zg € (—%, %), then by consistency, xp = —%. So,
the set of H where zy is not at the endpoint of the associated interval is pairwise-orthogonal
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and thus finite. The set of H where xy is at an endpoint of the associated interval different
from (xo)g is finite since we only consider points in £;(F ). So, there are finitely many H
where the z and xp—coordinates differ. (This reflects surjectivity of X — Y.)

In more complicated examples, like asymptotic cones of hierarchically hyperbolic spaces,
the basepoint xy need not have the property that dg (o, p%/) is either 0 or 1, and one finds
consistent points that differ from the basepoint on infinitely many coordinates. O

Remark 4.26. The cubical example illustrates a key difference between the notion of a
R—cubing and a hierarchically hyperbolic space: the uniqueness axiom for hierarchically
hyperbolic spaces (Definition @@) can not hold for the above construction, since the 7*H
have uniformly bounded diameter. So, a R—cubing is not simply a hierarchically hyperbolic
space with each associated hyperbolic space being an R—tree and all coarse equalities in
the definition replaced with equalities. Indeed, there are simple examples of CAT(0) cube
complexes of finite dimension that do not admit hierarchically hyperbolic structures that are
compatible with the cubical/median structure [BHS17bl [HS20]. O

Example 4.27 (Trees of flats). Let G = {a,b,c | [a,b] = 1) = Z? + Z. Let X be the
presentation complex (a nonpositively-curved square complex) and let X be its universal
cover. As a CAT(0) cube complex, X has a unique metric making each cube convex and
isometric to a Euclidean unit cube with the ¢; metric [Miel4]; let d; denote this metric.

Consider the following index set § , consisting of all cosets in G of canonical cyclic sub-
groups:

e gA = gla).
e gB = g(b).
* 9C = g(o).

We declare gA 1 gB for each ¢, and all other pairs are transverse. For each U € §", let T°U
be an isometric copy of R.
We leave the following as exercises for the reader:

e Define projections in such a way that the above data makes ()N(,dl) a real cubing
with index set § . N

e Show that the real cubing metric defined in X (as a subspace of ¢1(F")) coincides
with d;. R

e Note that (X,d;, p) is a complete connected median space of finite rank. Describe
the orthogonal poset-colouring for ()Z' ,d1, ) and show that it satisfies the tangible
filter condition.

e Modify X to a square complex X’ by blowing up the vertex to an edge, with one
endpoint contained in a torus and one contained in a circle. Find a real cubing struc-
ture on the universal cover X/ whose index set contains a unique E—maximal element
whose associated R—tree is the Bass-Serre tree of the above splitting of G. Show that
this can be done in such a way that the R—cubing structure is simultaneously an HHS
structure, see Definition [10.1]

e What is the relations between the two metrics?

e Note that (X’,d, i) is a complete connected median space of finite rank. Describe
the orthogonal poset-colouring for ()?’ ,d], i) and show that it satisfies the tangible
filter condition.

Together with Example |4.25 this shows that a space can admit multiple distinct real cubing
structures. O
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FIGURE 9. First, produce a rectangle satisfying the hypotheses of Claim
and then apply the claim to produce the red interval, which embeds in some
T*U,. Then build a new rectangle with top-left corner on L, and its right
vertical side contained in the red interval. This rectangle yields U,1 by
another application of the claim, and U,,+; & U,.

4.7. © Motivating non-example and some discussion of trapezoids. Not every com-
plete, connected, finite-rank median metric space is isometric to a real cubing. In this section,
we given an example.

Let X be the (closed) trapezoid in R? determined by the points (0,0), (0,1), (1,0), (1,2).
Let d; be the metric on X obtained by restricting the ¢; metric on R? to X. Let p be the
usual product median on R?.

Observe that X is a median subalgebra of R2. So, (X,d, ) is a complete, connected
median metric space of rank 2.

Proposition 4.28. There does not exist an R—cubing into which X isometrically embeds,
preserving the median, as a median-convex subspace. In particular, X is not an R—cubing.

Remark 4.29. By construction, X is an isometrically embedded median subalgebra of an
R-cubing, namely R? with the ¢; metric and median g, but it is not median-convex since,
for example, 1((0,0),(0,2),(1,2)) = (0,2) ¢ X but (0,0),(1,2) € X. O

Sketch of Proposition[{.28 Suppose that (Y,T") is an R-cubing and X — Y is a median-
preserving isometric embedding with convex image. Then by Lemma @, (X,3) is an
R—cubing.

So it suffices to derive a contradiction from the assumption that there is a real cubing
structure (X, § ) giving rise to the metric d; and the median .

The key fact is the following consequence of the definition of an R—cubing, which we leave
as an exercisd’

Claim 4. Let L be the Euclidean line segment in X joining (0,1) to (1,2). Let p € L —
{(0,1),(1,2)}. Let [a,b] x [¢,d] be a nontrivial axis-parallel rectangle in X (necessarily
median-convex) with (a,d) = p. Then there exist e < ¢’ € (¢, d) such that there is a Ue §
on which the projections of (a,e) and (a,¢’) differ and on the segment from (a,e) to (a,e’),
the projection my : X — T7°U is an isometric embedding.

Applying the preceding claim iteratively, as shown in Figure [0) one finds T—chains of
arbitrary length, contradicting Definition .
The remaining things to check are:

5Apologies; we will not leave things as exercises in this paper where a full proof is needed for the main
results, but we have sometimes done so in explaining examples.
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FIGURE 10. At left is the median metric space (X, d;, p). The lines indicate
some of the walls determined by the median p. Since this is just the sub-
space metric and median inherited from the plane, these walls are vertical or
horizontal. The middle space is X, equipped with the same metric dy, but
with a different median, indicated again by some of the walls. This is not a
median metric space. For example, the right and left vertical segments cross
exactly the same walls but have different lengths. At right is [0, 1]?, with the
product median and ¢; metric; it is a median metric space. The right arrow is
a median isomorphism, but not an isometry (it is bilipschitz). The left arrow
is an isometry, but not a median isomorphism.

e one must produce the sequence of rectangles as in Figure [0}

e one must check that any two parallel segments in one of the rectangles are "supported"
on the same R—trees;

e one must check that we do not have U,, = U,.1, which is essentially because of

Definition .

We leave the details to the reader, since this is an illustrative example. O

We note that X also supports a different median, p/, obtained by pulling back the product
median on [0,1]? under the homeomorphism X — [0, 1]? that scales each vertical segment
down so that it has length 1.

The triple (X, dy, ¢’ is not a median metric space. However, the above homeomorphism
shows that we can change the metric in its bilipschitz class, preserving the median, to obtain
a median metric space, namely [0, 1]2. This is an instance of an important result of Bowditch
that we shall use later. See Figure [10| for a summary.

4.8. Automorphisms of real cubings. We will later be interested not only in R-cubings,
but in group actions on them. We first define the notion of a morphism of R—cubings, which
is a lipschitz map at the level of the space, and which preserves the R—cubing structure.

Definition 4.30 (Morphism of R-cubings). Let (X,F ), (Y,") be R-cubings and K > 1.
A K-morphism is a triple (f,I,{fu: Ue § }) where
e f: X — Y is a K-lipschitz map;
e [:F — $" is amap preserving =, L, h;
e for each U e §', the map fy : 7°U — T°I(U) is a K -lipschitz injective map,
and all of the following hold:

o forall xe X and U e §, we have fu(ry(x)) = 7 (f(x));

e if U, Ve§ satisfy UhV, then fv(p9) = pfgg;,

e if UV, then fy(py) = Pﬁg;
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Remark 4.31 (“Downward” ps maps and morphisms). Let f, I, { fu} be as in Definition |4.30.
Let U,V € § satisfy U = V. Then for any x € X, the following holds. If mv(x) # p¥, then
by consistency, we have p¥;(mv(x)) = mu(x).

On the other hand, fv(pyy) = pfggg so, since fy is injective and mv(x) # py, we have
(U . (v
vy (F(%)) = fu(mv (X)) # pyiy) Hence, by consistency, pyiy) (fv (v (%)) = 7 (f(x)) =
fu(ry(x)). In summary, the equality
v
19}

Pf( ;Ofv=fUOP¥

holds in 7y (X) away from the point pg. O
Lemma 4.32. Let (f,1,{fu}) be as in Definition[{.30 Suppose that:

o [ is injective;
e if U¢im(I) then my o f is constant;
e cach fu is an isometric embedding.

Then f is an isometric embedding.

Proof. Let x,y € X. Let Ue § . Then druy (f(x), f(y)) = du(f(x), f(y)) by hypothesis,
so dx(x,y) < dy(f(x), f(y)). Next, suppose that U € $’. If U ¢ im(I), then the second
hypothesis implies that my(f(x)) = mu(f(y)). The two preceding facts immediately show
that f is an isometric embedding. g

Remark 4.33 (Recognising isometries). Suppose that (X,§ ) and (Y,$") are R-cubings
with the property that each map 7y : X — 7T*U and v : Y — T°*V is surjective (which can
always be arranged by replacing various R—trees with subtrees). Let (f, I, {fu}) be a mor-
phism from (X,3") to (Y,$"). Suppose that I is bijective and each fy is an isometry. Then
f is an isometric embedding by Lemma @, and, moreover, it follows from Definition .
that f is an isometry. O

IfX =Y,and § = §°, and I is bijective, and f and each fy is an isometry, then
(f,I,{fu}) is an automorphism of (X,T"). If, instead, there exists K such that f and each
fu is a K—bilipschitz map, and I is bijective, then (f, I, {fu}) is a K—automorphism.

Let (f,1,{fu}) and (g, J, {gu}) be automorphisms of (X, ). Then f o g is an isometry,
I'oJ is a bijection preserving &, 1, M, and for each U, f;qy) o gu is an isometry, so (f o
9,10 J,{fsw)ogu}) is an automorphism. There is an identity automorphism defined in the
obvious way. The inverse of (f,I,{fu}) is (f 7L, I7L {fg'}).

Hence the set of 1-automorphisms forms a group, denoted Aut(g ), of isometries of X.
An action of a group ' on (X, §") is a homomorphism I' — Aut(g").

Such an action in particular determines an action of I' on the set § , preserving the
relations, and an isometric action of I' on X.

4.9. Local real cubings and groves. Let (X, ) be a R-cubing. We say that (X,§") is
a local R-cubing if there exists xg € X such that the following hold for all V,W € §

o if WAV, then my(xq) = p¥;

e if V& W, then mw(x0) = pyy-
If (X,3") is a local R-cubing, then we refer to § (together with the relations =, d, L, the
R-trees 7°U,U € §, and the points/maps py) as a grove (i.e. a collection of trees, all in
one place).

Remark 4.34. Observe that if (X,§") is a local real cubing, and xo € X is as above, then
for any x € X, the set of U e § with my(x) # 7muy(Xo) is a collection of pairwise orthogonal
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elements and hence finite. This follows from consistency and the definition of a local real
cubing. O

Remark 4.35 (The "sheaf" of groves associated to an R-cubing). Let (X,§) be an R-
cubing.

Recall that ecach U € § can be associated to a subspace Py < X as follows: let Py be
the set of x € X such that my(x) = py whenever VWU or UZ V.

Given x,y € Py, observe that dw (7w (x), 7w (y)) > 0 only if W £ U or W_LU.

For each x € X, let 3’; be the subset of § consisting of those U € § such that x € Py.
(In other words, U € §y if and only if, for all V with VAU or U & V, we have p{ = 7y (x).)

Let Xy be the set of y € X such that my(y) # mv(x) only if V € F.. Then (X4, Fs) is a
local R—cubing and §, is a grove. This continues to hold if we replace each R-tree 7*V by
the subtree myv(Xx).

There are other variants on this. Define §, as above. Let X/ be the set of all y € X
such that the set of V with mv(x) # mv(y) is a set of pairwise-orthogonal elements of F,.
Then replace each 7°V,V € §.. by the R-tree my(X.). This again yields a local R—cubing.
Similarly, we can consider the real cubing (X”,§) consisting of that y whose projection
differs from that of x on at most one element of F. O

Remark 4.36 (Translating the local structure). We will typically be interested in the fol-
lowing situation. Let I' act transitively on X by K—automorphisms (for fixed K > 0). Then
for each x,y € X, choose (g,I,, {gw}) € T such that gx = y. Then for all U € §,, we have
I,(U) € Xy, and so g induces an invertible K-morphism of R-cubings (Xx, §x) — (Xy, 3’;)

Indeed, suppose that U € F. Then for all V with VA, (U) or I,(U) = V, we have

that U is either properly nested in, or transverse to, Ig_l(V). Hence, since U € §,., we have

(V)

. : . by
W1g1(v)(x) = pg‘l(V)' Since (g,I4, {gw}) is a morphism, we have 7v(y) = py/ ', whence

1,(U) € %;, So, I, : Ty — 3;, is injective, and considering (¢!, Ig_l, {gw}) shows that it is
surjective.

For each W € §5, the map gw : T*W — T*I,(W) is K-bilipschitz by definition.

To conclude, it thus suffices to show that the K—bilipschitz map g : X — Y restricts to a
map g : Xx — Yy. Suppose that z € Xx. Then mw(x) = mw(z) for all W € 3§ — 5. Now,
if Weg — S;,, then I,(W) € § — §x, so x,2z have identical image in T*I;'(W). Hence
mw(y) = mw(g(2)), so g(z) € Xy, as required.

The main case of interest is where K = 1, i.e. all of the maps above are isometries. The
exact same conclusion holds if we had used the local R—cubing (X’,§>) (with the modified
R-trees) constructed in the previous remark. n

4.10. Standard product regions, wedges, and clean containers in real cubings. Let
(X,S.) be an R-cubing. Recall that for each U € §, there is an associated subspace Py
consisting of exactly those points x € X such that

mv(x) = Pg

whenever VAU or U & V. Recall from Proposition that we can discard some elements
of § and assume that each Py is nonempty, but we don’t require this in this section.

For each p € Py, let lﬂpﬂ be the subset of Py consisting of those x with mv(x) = 7y (p)
whenever VLU. Similarly, let IE%,DL be the set of x € Py be such that mv(x) = mv(p)
whenever V = U.

Proposition 4.37. For all U e § and p € Py, we have the following:

(1) The subspaces E%, F{}, Py are closed and median-conve.
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(2) The inclusions E%,F{’] — X extend to a median-preserving isometric embedding
F%XE% — X with image Py. In particular, F{} and FIq_J are parallel for allp,q € Py.

(3) The map my : X — T*U restricts on Fy to a surjection to my(X).

(4) Let U,V € §'. Then V T U implies 0ry : Fv — Fu is an isometric embedding.
Similarly, ULV implies gg, : Fv — Eu is an isometric embedding.

Proof. Each real tree 7*V is Hausdorff, so singletons are closed. Each 7y is continuous,
so since Py, F{’I, E% are all defined as intersections of preimages of points in various real
trees, each of those sets is closed. Convexity follows in each case from the definition and
Definition @ and Definition .. This proves .

Given f € F¥, e € EY}, consider the point in ¢*(F") whose V-coordinate is 7y (f) for V C
U, and 7y (e) for VLU, and p¥ otherwise. This tuple is consistent in view of Lemma
(p—consistency) and the fact that Py # .

This tuple thus determines a unique point in X, by Definition . This defines an
isometric embedding Fﬁ X E% — X whose image is Py. This proves assertion once we
observe that the parallelism claim follows since, in a product median space, any two sections
of the natural projection to one of the factors are parallel.

Note that the image of F{; in CU coincides with that of Py, so to prove (3), it suffices
to show that Py surjects to my(X). To see this, choose 7y (x), and note that gp, (x) € Py
has the same image in 7°U as x does.

The final assertion follows from the definitions of the spaces involved. O

We often refer to any closed convex subspace parallel to F{} as Fy, and similarly for Ey,
when the choice of parallel copy is not important (for example, when we are just interested
in the set of walls crossing Fiy — see Lemma m

Corollary 4.38. Let U,V € § satisfy ULV. Then Py contains a closed convex subspace
Qf the form Fy x Fy. In particular, if h,v are walls respectively crossing Fuy and Fy, then
h and ¥ cross.

Proof. The first assertion follows from Proposition [4.37. The assertion about crossing walls
then follows. Indeed, let f € h n Fy and f' € h* n Fy and e,e’ € v n Fy,v* n Fy. Then
by Lemma (f,e)ehnuv, (f,e) e h* nu,(f,€) e h* nv* (f,e)ehnv* sohand v

Cross. ]
The following two restrictions on the combinatorics of the index set are often useful:

Definition 4.39 (Wedges). We say that § has wedges if, for all U, V € § for which there
exists W £ U, V| there is a unique E-maximal such W, denoted U A W. O

Definition 4.40 (Clean containers). We say that § has clean containers if for all U such
that there exists W with W_LU, there exists UL € § such that ULUL and ULV if and
only if V.= Ut O

Remark 4.41. If § has wedges and clean containers, then the following holds for all V.
Suppose that U = V. Then, if there exists W = V with ULW |, we have a unique E-maximal
such W, namely V A Ut and necessarily UL(V A U™). O

The next lemma is due to Berlai and Robbio [BR20a], who were working with hierarchically
hyperbolic spaces, rather than real cubings (but the arguments are formally identical):

Lemma 4.42 (Joins). Suppose § has wedges and a E-mazimal element. Let {U;}ic; € § .
Then there exists a unique element of § , denoted

\/Ui7

el
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that is E-minimal with the property that each U; is nested in it.

Proof. There exists U such that U; & U for all i; at minimum we can take U to be the
C-—maximal element. Since the length of =—chains is bounded, we can assume that U is =—
minimal with the above property. If V is also E—minimal with the property that U; = V for
all 4, then U AV is defined and U; £ U AV for all i. Now, U AV £ U, so by E—minimality,
U AV = U. Hence U £ V, contradicting =E—minimality of V unless U = V. This shows
that U is unique, establishing the existence of \/,.; U;. ]

Lemma 4.43 (Wedges of arbitrary subsets). Suppose that § has wedges. Let {U;}icr € &
and suppose that there exists V. € § with V.= Uj; for all i. Then there exists a unique
C-mazimal such V, denoted /\; U;.

Proof. Let 'V be as in the statement. By finite complexity, there is a E—maximal such V. If
V, V' are both nested in Uj; for all U;, then so is V v V’. This contradicts maximality of V
unless V = V', and we are done. O

5. CHARACTERISATION OF REAL CUBINGS AMONG MEDIAN SPACES

5.1. Finite-depth tangible poset-colourings give real cubings. The main theorem of
the section is:

Theorem 5.1 (R—cubings from poset-colourings). Let (X,di, ) be a complete, connected
median metric space of rank N < o0 and let xg € X be a basepoint. Suppose that there exists
D < o and a depth—D poset-colouring Col : VW — 31 of the walls of X that satisfies the
tangible filter condition.

For each U € S;, let Fy < X be the closed convex subspace obtained by applying Theo-
rem and Corollary to the tangible filter oy. Let § < S; be the set of U e F  such
that diam(Fy) > 0.

Then to each U € § we can associate a based R—tree T*U and a 1-lipschitz median-
preserving map my : X — T°*U such that the product map X — 81(3') is an tsometric
embedding making (X, §) an R-cubing in the sense of Definition . Moreover, this real
cubing has nonempty products.

Remark 5.2. In Section we will apply the above theorem to the asymptotic cone of a
hierarchically hyperbolic space, after changing the metric in its bilipschitz equivalence class
(using a theorem of Bowditch) to make it a median metric space. Since completeness and
connectedness are automatic for asymptotic cones, and finite rank will be verified using the
HHS structure, the main work will be to produce a finite-depth poset-colouring of the walls
satisfying the tangible filter condition. O

The proof of Theorem will occupy the rest of the subsection.
Fixing U € 8;, we take the filter oy which, by hypothesis, satisfies

fio(ou — 0x,) < 0.

So, there is a (nonempty) closed, median-convex subspace Fy such that the set op, of
halfspaces containing Fy is morally measurable and satisfies

ﬁO(O’UAO'FU) =0.

We collect some properties of the subspaces Fy. Since Fy is closed and convex, there is a
gate map hy : X — Fy. So far, we are not insisting on U € §', i.e. we allow the case where
Fy is a single point.
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Lemma 5.3. Let U e | be a colour. Let H(Fu) be the set of halfspaces h such that h, h*
both intersect Fy. Let Hy be the set of halfspaces associated to walls in Wy .
Then both of these sets of halfspaces are morally measurable, and fio(HuAH(Fy)) = 0.

Proof. By Definition and |Fi0o20, Lemma 3.9], Hy is morally measurable (Hy is insepa-
rable). By [Fio20, Lemma 3.6], H(Fy) is morally measurable.

We have H(Fu) = H — (oF, U of) where, for any set S of halfspaces, S* is obtained
from S by replacing each halfspace in S by its complement. Similarly, Hy satisfies Hy =
H— (oy v og).

A computation shows that

HulAH(Fy) < (culiopy) U (ology,) -
The defining property of Fy is that
ﬁO(O’UAO'FU) =0.

So it suffices to show that

fio(ozAog,,) = 0.
Recall from Lemma|2.20 that the involution * : H — H is measure-preserving. Moreover, we
have, for any sets A, B of halfspaces, that (A — B)* = A* — B*, so the claim follows. O

Next, we eliminate ambiguity arising from the fact that oy depends on xg, to the extent
that xq influenced our choice of oy.

Lemma 5.4 (Parallel copies of Fy). Let U € §,. Let F be a closed, median-conver subspace
of X such that fio(HuAH(F)) = 0. Then the gate map by : F — Fy is a median-preserving
isometry whose inverse is the restriction to Fy of the gate map h: X — F.

In particular, Fy and F are crossed by exactly the same walls.

Proof. This follows from Lemma [2.21. Indeed, by Lemma fio(HuAH(Fy) = 0, and
by assumption, fio(HuAH(F)) = 0, so fio(H(Fu)AH(F)) = 0, and Lemma applies,
showing that Fy and F are parallel and cross the same walls. O

Remark 5.5. The reader should think of any F in the previous lemma (including Fy) as
a "geometric realisation" of the colour U. However, the reader is warned that although,
by the lemma, any two such "geometric realisations" cross the same walls, the set of walls
crossing a given "geometric realisation" is not exactly the set Wy — the corresponding sets
of halfspaces differ by a set of measure 0. 0

Fixing U € SI, consider all of the closed convex subspaces F satisfying the hypotheses of
Lemma We call such an F a parallel copy of Fy.

Next, we take care of the "combinatorial" part of the construction of an R—cubing, i.e.
the part not requiring the R-trees, by equipping § < S; with the relations required by
Definition [4.2]

Definition 5.6 (Nesting). C is just the partial order on § already mentioned. So, chains
have length bounded by N < o0, and there is a unique E—maximal S. O

Definition 5.7 (Orthogonal colours). The colours U,V < § are orthogonal if there exist
parallel copies Fyy, Fy, of Fy, Fy respectively, such that the inclusions Fyy, F, — X extend
to a median-preserving isometric embedding Fy; x Fy, — X with convex image. (Here
the product is given the ¢; metric and product median, where the median and metric on the
factors are those inherited from X.) This is denoted ULV. We emphasise that orthogonality
has only been defined on §', so if ULV, then both factors of the associated product region
are nontrivial. O
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If U,V are not E-related or orthogonal, then they are transverse, denoted UAV.

Next, we verify all of the properties of =, L, i from Definition |4.2|not involving the R-trees,
which we have not yet constructed.

We first need a "geometric" description of nesting mirroring that for orthogonality.

Lemma 5.8. We have U & V only if, up to replacing Fy by a parallel copy, we have
FU C Fv.

Proof. Arguing almost exactly as in the proof of Lemma [5.4] using that U = V, one shows
that the gate map to Fy restricts on Fy to an isometric embedding. Hence, if U £ V|
then Fy < Fy, up to changing Fy in its parallelism class (replace it by the image of the
aforementioned gate map). O

From the preceding lemma, we get that = and L are mutually exclusive as relations on § .
From the definition, L is symmetric and anti-reflexive (note that anti-reflexivity uses that
Fy is not a single point).

From Lemma we have the following. Suppose that ULV and W & U. Then W_LV.
Indeed, we have a product subspace Fy x Fy, and Fw < Fy (after choosing an appropriate
parallel copy of Fyw, holding the given parallel copy of Fy fixed). So we have a product
FW X Fv. Thus WLV.

The part of the finite complexity axiom (Definition ) involving = holds by our
assumption that the depth is D < o0, so we just need to check the part about orthogonality.
This, together with anti-reflexivity, is why we have passed to § .

Lemma 5.9. Let Uy,..., UL e § be pairwise orthogonal. Then k < N, where N is the rank
of (X, p).

Proof. For each i < k, choose distinct x;,y; € Fy, (the choice of parallel copy does not
matter). Let w; be a wall separating x;,y;. Then w; separates the gates of x;,y; in any
parallel copy of Fy, lying in the product region Fy, x Fy; which exists by the orthogonality
assumption. From the product structure, it follows that w; and w; cross. Hence W contains
a set of k distinct pairwise-crossing walls, so £ < N by [Bowl13, Proposition 6.2]. O

Hence the finite complexity axiom is satisfied with x* > max{N, D}. We now move on to
the construction of the R—trees, having verified the parts of Definition not involving the
real trees.

5.1.1. Construction of T*U. We now construct the real tree 7°U for U € § as a quotient
of Fy. The same exact construction would work for U € Sl — 5", but for these colours, the
associated R-tree, as a quotient of Fy, would be a point, so we ignore these. (It may also
happen that the construction below gives a trivial R-tree for certain Ue § .)

The goal is to define a pseudometric Dy on X so that the metric quotient is a connected,
rank-1 median metric space, where the median py; is induced by p. We will then deduce
that the quotient is an R—tree. This R—tree need not be complete.

Fix U e § . For any x € X, we let X = hy(x). So, we have implicitly fixed a parallel
copy Fy onto which we are projecting. From the definition of parallelism, and Lemma [2.15,
it will become clear during the construction that the choice of parallel copy has no effect on
the outcome.

Definition 5.10 (t—distance, Ay). Given x,y € X, let
tu(x,y)|=di(%,¥).

Note that
U(X7 Y> = ﬁO(H(X, y) N HU)
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Indeed, the halfspaces separating X, y are exactly those that separate x,y and lie in H(Fy).
But by Lemma H(Fuy) coincides with Hy up to a set of measure 0.
We will use the notation
Ay =H(x,y) nHu
when the points x,y are understood (in what come next, we hold x,y fixed but vary U, so
will also use notation Ay etc., defined in the same way with V replacing U, but always with
respect to the same x,y). ]

In particular, recall that S is the unique = maximal element of § and X = Fsg. (We can
assume S € §', for otherwise Fg = X is a single point, and we are done.) Then X = x and
y =y. Also, Hg = H. So, di(x,y) = ts(x,y).

The next step is to define a quantity sy(x,y). The idea is that sy(x,y) will measure the
contribution to ty(x,y) coming from positive-measure subsets Hy n H(x,y) with V & U.

Definition 5.11 (s-distance for minimal U). If U is &—minimal, then Hy is the set of all
halfspaces associated to walls whose colour is exactly U, and we define

Fuy] = tux.y).

This will form the basis for an inductive definition of sy, where induction is on the level
of U, i.e. the maximum possible length of a =—chain with highest element U. So, in this
induction, we will use finite depth. O

For U not E—minimal, we define the quantity sy(x,y) as follows. First, recall that Ay =
Hu NnH(x,y) is fio-measurable, since it is the intersection of two inseparable sets (see [Fi020),
Lemma 3.9]).

For each V £ U,

fio(Avy) = tv(x,y).

We define a measurable set Py of halfspaces as follows. If V is E—minimal, then Py = Ay
(which is fio-measurable).

Proceed inductively on the E-level of V. Let Vy be the set of W = 'V with fio(Aw) > 0.
Let

Pv = Av — U Pw .
WeVvy

Assume by induction that each Pw < Aw, each Pw is fio-measurable, and Pw n Pt has
measure 0 whenever T # W.

Now suppose that V' = U has level at most that of V. We first claim that Py n Py~ has
measure 0 whenever V # V',

There are three cases:

o If VLV’ then H(Fv) n H(Fy/) = &, so fio(Hv n Hy+) = 0 by Lemma [5.3] So
Av n Ay has measure 0, so the same is true upon replacing A with P.
(The assertion H(Fv) nH(Fvy/) = & follows from the fact that, up to parallelism
(which does not affect the sets of halfspaces in question by Lemma , we have
a convex product region Fyv x Fys. So, no wall can simultaneously separate points
in Fy and Fy since the image of one under the gate map to the other is a single
point.)
e If V' C V, then Py < Ay — Py, as required.
o If VAV’ then let F = by (Fy/). So, up to a set of measure 0, the halfspaces in
Ay n Ay are in H(F) n H(x,y). If this set has measure 0, we are done.
Otherwise, note that H(F) = H(Fv) n H(Fy). So, by Lemma [5.3] the measure
of
A= H(x,y) (@ HV N HV/
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is positive.

Moreover, letting W4 be the set of walls whose associated halfspaces are in A, we
have Col(W4) E V,V'. Furthermore, since Hvy,Hys and H(x,y) are inseparable
sets of walls, so is their intersection A.

Thus, by Deﬁnition we have colours {W,};e; © V', V such that fio(Hw,n.A) >
0 for all 4 € I and such that W4 < [ J Ww,, up to replacing A by a subset differing

el
from it on a null set.
Now, up to null sets, we have Ay n Ay» = A < | J Aw,. Moreover, since Hw, N
iel

A < Hw, n H(x,y) = Aw, and by assumption fio(Hw, n A) > 0, we have that

fio(Aw,) > 0 and so W, € Vy n Vyr. Hence, Py n Py has measure 0, as required.
Next, we check that Py is fio-measurable. For each n > 1, let V5, be the set of W € Wy,
with fio(Pw) > % For any finite 7 < Vy;, the preceding discussion and the inclusion-

exclusion principle gives
f
(U P > 17|
WeF

|F| <n-fio(Ay) < n-di(x,y) < w0,
so since this bound is independent of F, we have that VY, is finite. So Vv = Upz1Vy, is
countable. Hence Py is the complement in a fio-measurable set of a countable union of
measurable sets, so it is fio-measurable.
We thus have that Py is measurable, and we define

su(x,y) = fio(Py).

Hence

Note that

U(X,Y) = tU(XaY) - Z SV(XaY)‘
VU
We have shown above that the sum on the right has countably many nonzero terms, all
positive, so the sum is well-defined. More precisely, choosing an enumeration {V,,},>1 of the
elements of the countable set Vy, we have

u(x,y) = fio (AU— U Pv>

Vevy

tu(x,y) — fio (U Pvn) .
n=1

For any n > 1, we have fio(Py, nPy,,) = 0 for all m # n, so we can write Py, = PV U Qp,
where fio(Q,) = 0 and Py, NPy, = for n # m. So

> fio(P},) < fio <U Pn> < ) fio(P}) + > fio(Qm),

whence fio (,, Pn) = 2ycu su(X,y), as required.
In particular, taking U = S, we have

di(x,y) = Z sv(x,y).
Veg®

This will be essential later when we verify Definition .
Now we can construct the R—tree 7°U
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Proposition 5.12 (Building 7°U). Let Ue § . Then sy : X2 — [0,0) is a pseudometric.
Let (T*U,Dvy) be the metric quotient of the pseudometric space (X, sy). Let my : X —
T°U be the quotient map. For each x,y,z € X, let

pu(ru(x), mu(y), mu(z) = Tu(K(x,y, 2)).
Then pyy is independent of the implicit choices of x,y,z and (T*, Dy, puy) is a connected
median metric space, and in fact an R—tree.
Moreover, my : (X,d1,u) — (T°U,Duy, py) is a 1-lipschitz median homomorphism.
Finally, for allx € X, we have my(x) = my(hu(x)), and if F, ¥’ are parallel copies of Fy
for V2 U or VAU, then my(F) = nu(F') is a single point, which we denote py;.

Later, where it is unlikely to cause confusion, for x,y € X, we will write Dy(x,y) to mean
Duy(mu(x), mu(y))-
Proof of Proposition[5.19 First we check that sy is a pseudometric; as part of this argument,
we will establish an identity that will also be used to see that Dy is a median metric.
Symmetry of sy is automatic, since H(x,y) = H(y,x) for all x,y € X.
Let x,y,z € X and let m = u(x,y,z).
We have
H(x,y) = H(x,2z) v H(y, z) — H(z,m),
essentially by the definition of a median. In other words,
H(x,y) = [H(x,2) = H(z, m)] L [H(y,z) — H(z, m)],
so intersecting both sides with Hy and taking fio-measures gives

tu(x,y) = tu(x,2) + tu(y, z) — 2tu(m, z).
(The reader can think of the factor of 2 coming from the fact that the first two terms
collectively count each halfspace separating m, z twice.)
In particular, when U is E-minimal, so syy = ty, we have verified that

(1) su(x,y) = su(x,2z) + su(y,z) — 2sy(m, z).
Suppose that U is not E=—minimal. Assume by induction on the E—level that equation

holds with V replacing U, for any V & U.
Then from the identities

tu(x,y) = tu(x,2) + tu(y, z) — 2ty (m, z)
and
SU(va) = tU(X7y) - Z SV(va)
VU
we deduce that sy(x,y) = su(x,z) + su(y,z) — 2sy(m,z), i.e. equation holds for
arbitrary U.

(For the reader concerned about convergence, here is the full computation. First observe
that Doy sv(X,y) is absolutely convergent, where the sum is, as usual taken over the
countably many nonzero terms, and the same is true with x replaced by y or m. So from
the inductive hypothesis, we have that

Z SV(X,Y) = Z SV(sz) + Z SV(ZaY) -2 Z SV(Z’m)‘
\4=18) vZUu vZU vZU
Combing this with ty(x,y) = tu(x,2) + tu(y,z) — 2ty (m, z) then gives
SU(X7 Y) = tU(X) Z) - Z SV(Xu Z) +tU(y7 Z) - Z SV(Za y) - 2tU(ma Z) -2 Z SV(Zv m)a
VU VU A=)
and this is exactly su(x,z) + su(y,z) — 2sy(m, z).)
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Equation ([f}) immediately yields the triangle inequality for sy, since sy(z, m) > 0, because
sy is defined as a measure of a set. So sy is a pseudometric.

Applying the same equation to any pair of distinct elements of {x,y,z}, a computation
shows that

SU(Xa Z) = SU(Xv m) + SU(Za m)a

and similarly with either x,z replaced by y.

Let (7°U,Dy) be the metric quotient of (X, sy7) (i.e. identify points at sy—distance 0).
Let my : X — T°U be the quotient map.

The equalities of the form

su(x,2z) = sy(x,m) + sy(z, m)

almost show that p is a median for the pseudometric sy, but they do not establish uniqueness
of the median. In other words, we have shown that for all 7y (x), 7u(y), mu(z), there exists

m = NU(WU(X)y 7TU(y)7 7TU(Z)) = 7TU(/"“(Xu Yy, Z))
such that

(1) Dy(ru(x), mu(y)) = Du(ru(x),m) + Dy(m, my(y)),
and the same holds with x or y replaced by z. We have not yet shown that m is unique with
this property, which is needed to have 7°*U be a median space. This will be verified as part
of the proof that 7°U is an R-tree, using Proposition [2.24]
Now we show that T°U is a geodesic space with unique geodesics.
First, for any x € X,
H(Fu) n H(x,hu(x)) = &,
so by Lemma
fio(H(x,hu(x)) N Hu) = 0,
so su(x,hu(x)) = 0. Thus my(x) = mu(hu(x)), as claimed in the statement.
By the definition of syy and the fact that hy is 1-lipschitz, we have that my is 1-lipschitz
and hence continuous. Thus, by connectedness of X, the space 7°U is connected.
Next, we show that my sends geodesics to geodesics. Indeed, let x,y € X and let ~ :
[0, L] — X be a geodesic (parametrised by arc length) with v(0) = x,v(L) = y). By the
definition of a median metric, for 0 < r < s <t < L, we have

p(v(r),7(s),7(t)) = ~(s).
Now, continuity of 7y implies that my o~y : [0, L] — T°*U is a continuous path joining 7y (x)
to my(y). Moreover, we have
pu(mu o y(r), mu 0 y(s), Ty 0 ¥(t)) = Ty 0 ¥(s).
So, by , we have
Dy(my ov(r), mu 0 y(t)) = Du(ru o v(r), mu 2 (s)) + Du(ru 0 (s), mu © (1))

Applying the above to arbitrary subdivisions of [0, L], if 0 <a=s90<---<sp=b<Lisa
subdivision of [a, b], then for any 0 < i < j < k, we have

j—1

Dy (ry o 7(a), 7y 07(b) = ), Du(ry o (se), T © ¥(se11)),

{=i
by repeated application of . This shows that the right side is independent of the subdi-
vision of [a, b], so taking suprema over subdivisions gives

)

Dy(mu ov(a), 7y oy(b)) = ’WU © 7’[a,b]

as required. Hence T°*U is a geodesic space and 7y takes geodesics to geodesics.
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We need an auxiliary claim:

Claim 5. Let x,y € X and let a, 8 be geodesics of (X,d;) starting at x and ending at y
(and parametrised by arc length). Then 7y o a = my o .

The proof of the claim is illustrated in Figure [11]

FIGURE 11. In the middle is the geodesic bigon and the sets A, B of walls
in the proof of Claim If A, B both correspond to sets of halfspaces with
positive measure, then Deﬁnition provides {U;}, {V;} so that each U;, V;
contributes a positive-measure set of halfspaces to the rectangle I(a,c), and
every wall in W(a,c) has colour nested in some Uj;, V;, so the rectangle
collapses to a point (picture on the right). But if #p has measure 0, then the
rectangle is degenerate (picture on the left).

Proof of Claim[3 Since my factors through hy, we can assume for simplicity that x,y € Fy,
and hence «, 8 c Fy (by convexity of Fy).

If « = 3, we are done, so assume there exists ¢ such that «a(t) =d e a— 5 and B(t) =
B — a. Note that b,d do not lie on a common geodesic from x to y. Let a = u(x,b,d)
let ¢ = p(y,b,d).

Then the sequence (a,b,c,d) is a rectangle in the sense of |[CDHI0, Definition 2.22],
by |[CDHI10, Remark 2.23.(2)]. Hence H(a,d) = H(b,c¢) and H(a,b) = H(c,d), and every
wall associated to a halfspace in the first set crosses every wall associated to a halfspace in
the second set. This follows from [CDH10, Corollary 5.9]. Let A be the set of walls separating
{a,b} from {c,d} and let B be the set of walls separating {a,d} from {b,c}. Notice that the
sets of walls A, B are inseparable. Let H 4, Hp be the sets of halfspaces associated to walls
in A, B respectively. Up to sets of fio-measure 0, we have A € Wy and B € Wy.

First suppose that fio(H4) > 0 and fio(Hg) > 0. Since the sets of walls A, B are
inseparable and each wall in A crosses each wall in B, from Definition there exist
{Ui}iela {Vj}jej = U such that

o flo(HanHy,) >0foralliel, fio(BnV;)>0forall jeJ,
e A c UWu,, B < |JWy,, up to sets of walls associated to measure-0 sets of
iel jeJ
halfspaces, and !
e every wall with colour nested in U; crosses every wall with colour nested in V; for
allte I, je J.

Notice that V; = U for all j € J. Indeed, if V; = U for some j € J, since each wall in
W, crosses each wall in ij = Wy and U; £ U we would have that each wall in Wy,
crosses itself, which is a contradiction. Hence my(b) = my(c) and my(a) = my(d). (Indeed,
the U; show that, for example, sy(b,c) = 0.)

On the other hand, since V; = U for all j € J, we must have U; = U for all 7 € I, as
argued for V;  U. So my(a) = my(b) and my(c) = my(d). In particular b, d have the same
image.

Now suppose that fio(H4) = 0. Then a = b and ¢ = d. Hence b,d lie on a common
geodesic from x to y, a contradiction.

be
and
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Hence 7y o a(t) = my o B(t) for all ¢, as required. O

Recall that, for any x,y, the median interval I(x,y) between x,y is the union of geodesics
in X between x,y (since X is a geodesic median space; see Lemma. So, by the preceding
claim and the fact that geodesics map via 7y to geodesics, my(I(x,y)) is (the image of) a
single geodesic in 7°U from 7y (x) to mu(y).

Claim 6. Let x = my(x),y = mu(y). Suppose that m € X has the property that m =
7wy (m) lies on a geodesic in 7°U from X to y. Then there exists m’ € I(x,y) such that
sy(m,m’) = 0.

Proof. Since X is complete and finite-rank, I(x,y) is compact (Lemma, and in particular
closed in X. As an interval, I(x,y) is convex. Hence there is a gate map g : X — I(x,y).
(More generally, intervals in a median algebra are always gated, and the gate of a point in
I(x,y) is just the median of that point, x, and y.)
Let m’ = g(m), so m’ € I(x,y), and the walls separating m, m’ are exactly those that
separate m from I(x,y). If sy(m, m’) = 0, we are done. So, suppose that sy(m,m’) > 0.
Now, pu(x,y, m) = m’, so by the equality established above, we have

su(x,m) + sy(y,m) = sy(x,y) + 2sy(m, m’).
Hence
DU(iv y) < DU(ia ﬂl) + DU(}_,’ ﬁ’l),
so m cannot lie on a geodesic in 7°*U from X to y. This is a contradiction, so we are done. [J

The preceding claim shows that any geodesic in 7°U from X to y lies in my(I(x,y)),
which we saw above is a single geodesic. Since x,y were arbitrary, we conclude that any two
points in 7°U are joined by a unique geodesic.

On the other hand, any X,y,z € 7T°U determine a geodesic triangle whose three sides all
pass through py(X,y,z). Another application of uniqueness of geodesics now shows that
T°U is a 0-hyperbolic geodesic metric space, i.e. an R-tree. In particular, 7°U is a median
space of rank 1, and py; is the median. (See Proposition [2.24))

In order to prove the proposition, it remains to prove the claim about V & U or VAU.
First suppose that V & U, so by Lemma we can choose Fy such that Fy < Fy. If
X,y € Fyv we thus have

fio((H(x,y) n Hu)AH(x,y) nHv)) =0,

so my(x) = my(y), i.e. mu(Fy) is a single point. If F is parallel to Fy, then for all x,y € F,
the fact that my(x) = muy(hu(x)) then shows that my(x) = my(y), as required.

Now consider the case where UAV and consider my(Fv) = mu(bu(Fv)). If the latter is
a single point, we are done, so suppose that x,y € Fy have distinct gates on Fy, denoted
X,y.

By replacing x with by (Xx) and doing similarly for y, we can assume that H(X,y) =
H()A(,}A’), where x = bV(i) and y = []V(y)

Now, since X,y € Fy we have that H(X,y) € H(Fy); similarly, H(x,y) € H(Fv). Since
H(Fy) and H(Fv) coincide with Hy and Hy up to measure 0, respectively, we have that
up to measure 0, H(X,y) is contained in Hy N Hy.

Let A be an inseparable set of walls such that fio(H4AH(%X,y)) = 0 and Col(A) c UnV.
For example, we can take A to be the intersection of the inseparable set H(X,y) with the
inseparable set Wy n Wiy

Then from Definition , there exists a family {W;},e; & U,V such that A c
U Ww, (up to a null set) and so Ha < | Hw, (up to a null set). Moreover, each H 4 NHw,

el el
has positive measure.
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Now, each W; = U, V| so since U and V are not E-related, the preceding nestings are
proper. Thus the contribution of H 4 N Hw, to Dy(X,y) is 0 for each i. More precisely, we
have shown that up to a set of measure 0, we have A c Py.

Hence my(x) = my(y), i.e. my(Fy) is a single point.

Exactly as in the nested case, the fact that my factors through hy shows that the same
holds for any parallel copy of Fv. This completes the proof. O

5.1.2. Checking the remainder of Definition [{.2.

Proposition 5.13 (Distance formula). Let 7 : X — [[ycze 7°U send each x to the tuple
(mu(%))yezs - Fizing a basepoint xo € X, base each T*U at 1y = my(xo). Then the image
of T is contained in £1(F ), and 7 is an isometric embedding, and, identifying X with its
image, each Ty coincides with the natural projection £1(F") — T*U.

Proof. The final statement, about natural projections, follows immediately from the defini-
tion of m. Let x,y € 7*. We saw above that

dl(XaY) = Z SU(Xay)a

Ueg*
ie.
di(xy) = 3 Dulrux), mu(y)).
Ueg*
so 7 is an isometric embedding. In particular, since d;(x,xg) < oo for all x, the image of 7
is in £1(F"). O

We have now verified the first part of Definition . We have also constructed the
R—trees 7°U and, for V & U or VAU, we have chosen a point p¥ e 7°U — see Propo-
sition @ As required by Definition pg always lies in 7y (X), because of how it was
defined.

We now check the rest of Definition :

Lemma 5.14. Let U &= V or ULV. Suppose V&= W, or VAW and W +U. Then
PW = Pw-

Proof. Suppose that U = V. Then we can choose Fy; in its parallelism class to lie in Fy/, so
by Proposition @ we have p{,{, = p‘YV.

Next, suppose that ULV. Then we can choose parallel copies of Fy, Fyv that intersect
in a point, by the definition of orthogonality. An application of Proposition [5.12 again gives
PW = Pw- O

Next, suppose that U & V. Let my(x) € T*V. Define p¥;(mv(x)) to be my(x) if mv(x) #
pg, and define it arbitrarily otherwise. To check that this is well-defined, we will use the
following lemma, which also implies the bounded geodesic image axiom of Definition

Lemma 5.15. Let U & V and let x,y € X. Suppose that the geodesic in T*V from mwy(x)
to wv(y) does not pass through py. Then my(x) = my(y).

Proof. Without loss of generality, x,y € Fyv and Fy < Fvy. So, we work entirely in Fy.

If hy(x) = hu(y), then my(x) = mu(y), and we are done. So, writing X,y for the gates
of x,y on Fy, we have

fio(H(x,y) n H(Fy)) > 0.

Let a = p(x,y,X) and let b = pu(x,y,¥).

So, b lies on a geodesic from x to y (by the definition of the median and the fact that we
are in a geodesic median space) and the same is true of X, by the definition of the gate of x,
since y € Fy. In short, b,x € I(x,y).
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Now, p(x,X%,b) = a by Definition Also, p(b,x,y) = y. So by |[CDHI10, Remark
2.23|, the tuple a,b,y,% (in that order) is a rectangle. So, H(a,X) = H(b,y) and H(a,b) =
H(Xa y) N H(FU)

Every wall associated to a halfspace in the former set crosses every wall associated to a
halfspace in the latter set. Now, if my(x) # mu(y), then H(x,y) n H(Fy) has a positive-
measure subset A < Py.

If H(a,%) has measure 0, then 7y (I(x,y)) intersects mv(Fu) = pV, and we are done.

Apply Definition ﬂ to find {U;}ser = U such that A | Hu,, and {V,}jes & V such

i€l
that H(a,%) is, up to a null set, contained in | J Hv,. Moreover, every wall associated to a
jedJ
halfspace in Hy, crosses every wall associated to a halfspace in Hy, for all i € I, j € J, and
the following hold for all ¢, j:
e fio(Ha nHuy,) >0, and
o fio(H(a,x) N Hy,;) > 0.

Now, if U; — U for some ¢ € I, then we contradict that A is contained in Py. So, U = U;
for all ¢ € I, whence, by Proposition [2.22 and the definition of orthogonality, we have ULV
for all j € J and a is contained in a parallel copy of Fy. Again, since a lies on a geodesic
from x to y, we see that 7y (I(x,y)) passes through 7y (a) = py, as required. O

Lemma 5.16. Let U & V. The map pX TV — T°U is well-defined and constant on
each component of T*V — {py}.

Proof. To see that py} is well-defined, note that Lemmal|5.15 implies 7y (x) = myu(y) whenever
x,y have the property that myv(x) = mv(y) # pg. This also shows that pg is constant on
each component of T*V — {pY{}. O

It remains to verify the consistency equations from Definition , and to show that X
coincides with the set of points in £;(F") satisfying the consistency equations.

Lemma 5.17. If U S V and x € X, then either my(x) = p3 or p(mv(x)) = mu(x).
Proof. This is a rephrasing of the definition of pg. O

Lemma 5.18. Let UNV. Let x € X. Then either my(x) = pyy or the same holds with the
roles of U,V reversed.

Proof. Let a = by(x) and let b = hy(x) (so, we have implicitly fixed parallel copies of
Fuy,Fv).

If W is a wall separating x from a and crossing Fv, then w cannot separate x from b. If ¢
is a wall separating x from b and crossing Fy, then we therefore have that o, cross.

If mv (I(x,a)) is a single point, then 7v(x) = p¥, and we are done. So, assume not. Then

fio(H(x,a) n Hv) > 0.
Similarly, if 7y (I(x,0)) is a single point, we are done, so we can assume that
fio(H(x,b) N Hy) > 0.

Hence we have two positive-measure sets of halfspaces, A € Hy and B < Hy, such that
every wall associated to a halfspace in A crosses every wall in a halfspace associated to B.

Now apply Definition to find {U;}ier = U and {V,}jes = V such that (up to null sets
of associated halfspaces) A-halfspaces are associated to walls coloured U; and B-halfspaces
are associated to walls coloured V, and every wall coloured Uj; crosses every wall coloured
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V. Moreover, the sets H4 N Hy, and Hp N Hy, have positive measure. If U; & U for all
i € I, then fio(A N Py) = 0 and we get

Dy (Xv pg) =0,

and the same holds with V and U switching roles if V; & V for all j € J. We conclude
that U = Uy, for some iy € I (and so {U;} = {U;,}) and V =V, for some jy € J (and so
{Vi} ={Vjo}).

One can now use [Fio20, Corollary 3.11] and |[Fiol8 Proposition 2.10] to construct par-
allel copies Fy, Fyv whose convex hull in X is isometric to Fy x Fy (more explicitly, use
Proposition , so by Definition ULV, a contradiction. l

We have finished verifying the consistency conditions. To verify that the consistency
conditions completely characterise the image of X in ¢1(F), we prove the following.

Proposition 5.19 (Realisation). Let (xu)yczs € 41 (3") and suppose that the following hold
for al U, VegF :
o [fUMNV, then
du(xu, pyy) - dv(xv, py) = 0.
e [fUCV, then
dv (xv, py) - du(p(xv), xu) = 0.
Then there exists x € X such that my(x) = xy for all Ue § .

Note that the point x provided by the proposition is necessarily unique. Before the proof,
we need a general lemma about gates in X.

Lemma 5.20. Let A ¢ X be a closed convex subset and let g : X — A be the gate map.
Then for all U € § and all x € X, the point my(g(x)) € mu(A) lies on the T*U-geodesic
from my(x) to any point in wy(A).

Proof. Since 7y is continuous, my(A) is connected and hence convex in 7°U. Let p € my(A),
so we can write p = my(a) for some a € A. Then g(x) lies on a geodesic in X from x to a,
so since my sends geodesics to geodesics, my(g(x)) lies on the geodesic from 7y (x) to p. O

Proof of Proposition[5.19 Fix a tuple (xu)yeze € ©1 (") as in the statement (i.e. a consis-
tent tuple in ¢1(F")). Fix a basepoint y € X.

The spaces Yy: First, we study the preimage of xy under the projection 7.

For each U € §, the set Yy = WI_JI(XU) is closed, since 7°U is Hausdorff and ny is
continuous (since it is lipschitz).

Moreover, Yy is median-convex since 7y is a median homomorphism. Indeed, ifa,b € Yy
and c € X, then py(my(a), 7u(b), mu(c)) = xyu, and so my(pu(a, b, c)) = xy, as required.

Also, Yy # O since 7y : Fy — 7T°U is surjective (recall that 7°U is by construction a
quotient of Fy).

Using consistency and the Helly property: We next claim that Yy n Yv # O for
all U,V e § . We will use the consistency assumption.

e If ULV, then since my is surjective on any parallel copy of Fy/, and the same is true
reversing U and V, the definition of orthogonality yields some a € Fy x Fy such
that 7y(a) = xy and my(a) = xy. So,ae Yun Yy.

o If VAU, then consistency implies, without loss of generality, that xyv = pg =
mv(Fu). Choose a € Fy such that my(a) = xy. Then ny(a) = ,03 = Xy, SO
againae Yy n Yvy.
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e I[f U & V, then there are two possibilities. If pg = xv, then we can takea € FynYuy,
and as in the transverse case we get a € Yy n Yv. Otherwise, if xy # pg, then
choose a € Fy n Yy. Then ny(a) = pg(xv) = Xy, by the consistency assumption
and the definition of the map pg.

By the Helly property for convex sets [Roll6, Theorem 2.2|, for any finite set S < §°, we
therefore have
Ys=[)Yu#2
UeS
The set of relevant domains: Let F be the set of U such that my(y) # xy. Let F),
be the subset of F consisting of those U for which

1
DU(y) XU) > —.
n

Since (xu)u € £1(F) and di(y, %) < o0, we have >y Du(y,xu) < . So, F, is finite
for each n, and F is countable.

If F = (&, then y is the desired point, and we are done. So we assume that F # 7.

By choosing an arbitrary enumeration of F, we write

0
F= L:JO]-“n,

where Fy = ¢, and for all n > 1, we have F,, = F,,_1 U {V,,}, where V,, € F is the n'?
element in the enumeration.

The points y,: We define a sequence (y,)n>0 in X as follows. First, let yo = y.

For n > 1, using the above application of the Helly property, we have that Yz, # .
Moreover, Y r, is closed and convex, as the intersection of closed convex sets. So Yz, admits
a gate map, and we declare y,, to be the image of yy under the gate map to Y£,.

Our goal now is to show that (y,), is a Cauchy sequence, so that by completeness of X,
this sequence converges to some point x € X, which we will show satisfies my(x) = xy for
each U.

Recall that F,, = F,—1 u {V,}, so that

Y]:n = YFn—l N Yvn

This has two useful consequences:

(A) By the definition of the gate, u(y,yn,¥~n) = yn whenever n > N. Hence yy lies on
a geodesic from y to y, whenever N < n. Here, we have just used that Yr, < Yz,
when n > N, and both sets are closed and convex.

(B) The point y,, is the gate of y,—1 in Yv,. We now check this, and use the following
notation: given a closed convex set A, let g4 : X — A be the gate map. So, by definition,

Yn = ngn—levn (y>
But Yrn-1nYv, = gv, (Yrn-1), by e.g. [Fio20, Lemma 2.2.(1)|. Hence Ov,. vy =

gvy, ©0vx ., by [Fio20, Lemma 2.2.(2)]. Thus

Yn = 0Yv, (Yn—1>'

Comparing projections of y,yy: By construction, the points y,yxn can have different
projections to 7°U when U € F. We now argue that elements of F are the only places
where these projections can differ.

Claim 7. Let N > 0 and suppose that U e § satisfies Dy(y,yny) > 0. Then Ue F.
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Proof. We argue by induction on N. In the base case, N = 0, we have y = yn and so the
claim holds.

Hence fix N > 1 and suppose the claim holds for N — 1.

Assume that U € § — F. Then ny(y) = xu, by the definition of F. Let V = Vy, so
that Fy = Fy-1 U {V}. We saw above that yy is the gate of yy_1 on Yv. Also, by the
induction hypothesis, Ty (yn-1) = mu(y), since U ¢ F. Since V € F, we have mv(y) # xv.

We now analyse four cases, according to how U and V are related:

e Suppose UhV. Recall that my(y) = xuy. Suppose that xy # pg. Then by consis-
tency, pU = xv # mv(y). So the consistency of 7y (y) and mv(y) is violated.

Hence pg = xy. In other words, my(Fv) = xy. So, we can choose a € Fy such
that a € Yy and my(a) = mu(y) = mu(yn—1). Thus, by Lemma [5.20, the gate of
yn—1 in Yy has U—coordinate my(y). So my(y) = mu(yn)-

e Suppose U = V. If my(yn) (which coincides with xv since yy € Yy ) differs from
pY, then by consistency, we have my(yn) = pyy(xv) = xu = Tu(y).

Otherwise, mv(yn) = py. Then my(Fuy) = mv(yn), so we can choose a € Fy
with my(a) = my(yn-1) and a € Yy. So, again by Lemma and the induction
hypothesis, mu(yn) = Tu(yn-1) = mu(y).

e Suppose V & U. Recall that my(y) = mu(yn-1) = xu. If xuy # pg, then by
consistency we have p¥(xu) = xv = mv(y), a contradiction. So py; = xy. Choose
a € Fy with my(a) = xy. Then a € Yv and my(a) = mu(y) = mu(yn-1), so by
Lemma B30, 7y (yx) = 10(y).

e Suppose ULV. Then there exists a € Fy x Fy such that my(a) = xv and ny(a) =
xy = Tu(yn-1). So by Lemma [5.20, my(yn) = mu(y).

This completes the proof of the claim. O

Conclusion: Recall that yy lies on the geodesic from y to y, when n > N.

For any U € §, one of the following holds. If U e F, then for all sufficiently large
n, we have y, € Yy, so muy(yn) = xu. If U ¢ F, then by the Claim, we have that
mu(yn) = mu(y) = xy for all n.

Since my takes geodesics to geodesics, Dy(y,yn) < Du(y,y») for n = N. For sufficiently
large n, we have my(y,) = xu. So Du(y,yn~) < Du(y,xu).

From the Claim, we thus get:

di(y,yn) < Z Dy(y,xu) = di(y, (xu)u) < o,
UeF
and dq(y,yn) is nondecreasing in N. So the sequence di(y,yn) is convergent, and in par-
ticular di(ym,yn) — 0 as m,n — 0.

Thus (yn)n is a Cauchy sequence, which must converge to some x € X by completeness
of X. Finally, we saw that the y and y,, projections to 7°U can only differ if U € F, and
for such U, we have my(y,) = xy for all sufficiently large n. Hence, by continuity of 7y, we
have my(x) = xy for each U, as required. O

Lemma 5.21. The real cubing (X, g ) has nonempty products.

Proof. Let U € § . Consider the parallelism class of subspaces Fy. By construction, Fy #
&. Let Fy be a fixed representative. Choose x € Fy. Let V € § satisfy VAU or U £ V.
Then by definition, 7y (Fy) = mv(x) = p%, which verifies Definition i.e. the nonempty
products property. O

This finishes the proof of Theorem . In summary, (X, ) is an R-cubing, where

¢ § C 31 is the index set;
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T°U is the metric quotient of the pseudometric space (X, sy), the projection map
7y is the quotient map, and it is a median homomorphism;

e the nesting relation on § is the original one coming from the poset-colouring;

e ULV if and only if, up to parallelism, Fy, Fy span a convex product region (and

dealing with orthogonality is why we restricted to 7°);

e if U= V or UMV, then py = my(Fu);

e if Uz V, then for all x € X, either 7y (x) = p¥ or p3s(7v(x)) = mu(x).
In particular, the subspaces Fy defined using the tangible filter oy coincides with the sub-
space Fy defined in terms of the real cubing structure in Section [4.10. Indeed, let Fy be the
subspace defined in terms of oy. As noted above, if U = V or UAV, then ,08 = 7y (Fu),
so Fy © Py. Moreover, if V1 U, then since my factors through the gate map to Fy, the
definition of orthogonality implies that 7y is constant on Fy. So, letting Py = Fy x Ey
as in Proposition [£.37, we have a parallel copy Fy with Fy < Fy. On the other hand, if
p € Fy, then the gate p on Fy has the same V—coordinate as p whenever V &£ U. On the
other hand, if V & U, then Fy is parallel to a subset of Fy, so no wall separating p, p has
colour V. Hence p = p and Fy = Fy. So from now on we use the notation Fy for Fy in
a real cubing since, if that real cubing happened to come from a poset-colouring (as we are
about to show is always the case), there would be no ambiguity.

Remark 5.22. A given real cubing can admit many real cubing structures, and a given
median space can admit many finite-depth tangible poset-colourings. This is clear even
when the space is R — it has a trivial real cubing structure as a real tree, corresponding to a
poset-colouring in which all walls have the same colour. On the other hand, by subdividing
it into 1—cubes, we get a different real cubing structure from Example corresponding
to a poset-colouring with countably many colours. This is in contrast to Proposition [3.27,
which says that among orthogonal poset-colourings, there is essentially a unique one. O

5.2. © Real cubings have finite depth tangible poset-colourings. Conversely, we now
provide a poset-colouring for the walls in a real cubing:

Proposition 5.23. Any real cubing is a complete, connected median metric space of finite
rank which admits a finite-depth poset-colouring that satisfies the tangible filter condition.

Proof. Let (X,§") be a real cubing. We invoke Lemma and assume without loss of
generality, that § has a unique = maximal element.

Moreover, for convenience, we apply Proposition @ and henceforth assume that (X, 3")
has nonempty products.

From Lemma and Lemma @, the real cubing (X,§") is a connected median metric
space of finite rank and by definition, it is complete.

Let W be the set of walls. For all U € §, let Fy be the subspace defined (up to parallelism)
in Proposition @ Define S;, — T to be the subset {Ue § | diam(Fy) > 0}.

Observe that if U ¢ 3;, that is Fy is a point, and V £ U, then V ¢ 8’; as Fy is (parallel
to) a subspace of Fy by Proposition Furthermore, if U ¢ S;D, then there is no wall that
crosses Fy as w n Fy and W* n Fy can not be both non-empty.

Now, X is a point if and only if both S;, and W are empty. In this case, the poset-colouring
map Col : W — {S} trivially satisfies the definition.

We now assume that X is not a point and so the E-maximal S € 3; and W # (.

We define the map:

Col : W — §,,
where, for a wall w € W, Col(w) is the =—minimal element U of S; such that @ crosses Fy,
that is, both halfpsaces w, w* intersect Fy.
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We now show that the map is well-defined. First, every wall crosses some Fyj, for U € 3’;.
Indeed, suppose that the wall @ separates x,y € X. Since x,y € Fg, where S is the unique
E-—maximal element, w crosses Fg = X.

We next show that the minimal element U is well-defined. For that, it suffices to show
that if w crosses Fy and Fvy, then there exists W = U, V such that @ crosses Fw. Then,
from the fact that T-chains are finite, the existence of a ©-minimal such U follows. Notice
that without loss of generality, we can assume that UAV. Indeed, since there is a wall which
crosses both Fy and Fy, U and V cannot be orthogonal, because a halfspace must intersect
Fy x Fv in a convex set. If one of them is nested in the other one, say U E V, then it
suffices to take W to be U. So assume UAV.

If W crosses Fy and Fy, then there exist x,y € gr, (Fu) such that @ separates them.
Since py; is a point and x,y € Fy, we have that my(x) = my(y) = pyy; symmetrically, we
have that mv(x) = mv(y) = py. Since x # y, by Lemma there exists W € § such
that mw(x) # mw(y). In particular Fyy is not a point and so W € S;J. Furthermore from
consistency, we have that W £ U,V as required. Therefore, the map Col is well-defined.
In both the existence and uniqueness proofs above, we have used that C=—chains in § have
bounded length, by Definition .

We next show that Col is a poset-colouring as in Definition

Since § is an index set for a real cubing structure, (3;,, C) is a partially ordered set and
by assumption, it has a E—maximal element.

Verifying Deﬁnition: Assume that @ separates h, ¢ and Col(ﬁ), Col(v) = Ue S;D.
From the definition of the map Col, we have that h and @ cross Fy. Since 4 separates h
and 0, it follows that 4 crosses Fy, in view of convexity of the latter. From the minimality
of Col, we have that Col(t) = U, by the same argument as was used to show that Col is
well-defined.

Verifying Definition : Let U,V € S; and suppose that each wall in Wy crosses
each wall in Wy, up to measure 0 sets of halfspaces. Then, from the definition of the poset-
colouring, we have that each wall that crosses Fy crosses every wall that crosses Fv (a priori,
up to measure 0 halfspaces). Since real cubings are connected median metric spaces of finite
rank and Fy and Fy are closed, median—convex subspaces, it follows from Proposition [2.22,
that there is an isometric embedding of Fy x Fy into X with median—convex image. Since
by assumption Fy and Fy are not points, it follows Proposition .37 that U and V are not
C—comparable.

Verifying Definition : Suppose we have an inseparable set A of walls such that
Col(A) £ U,V and the set H 4 of halfspaces associated to A has positive fio-measure.

Let D = hp, (Fv). Then every wall in A crosses D, since by assumption any @ in A has
Col(a) nested in U and V and hence crossing Fy and Fy since F 4 is (up to parallelism)
contained in Fy and Fy.

Let x,y € D be such that H(x,y) n H 4 has positive fio-measure (such x,y exist because
of how fio is defined in [Fio20, Section 3|).

For each such x,y, all elements of Rel(x,y) = {W € § | mw(x) # mw(y)} < 3’; are
nested in U and V.

Consider the subset MaxRel(x,y) of E—maximal elements of Rel(x,y). Notice that there
are countably many elements in Rel(x,y), since the sum of the distances between the projec-
tions of x,y into the real trees associated to elements in Rel(x,y) converges to the distance
between x and y. Hence, there are also countably many elements in MazRel(x,y).

Moreover, the median interval I(x,y) is the union of closed convex subsets, each of which
is a nontrivial median subinterval, and for each of which there is some W € MaxRel(x,y)
so that the gate map to Fw is an isometric embedding on the given subinterval. (These
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subintervals may overlap.) Nontriviality means each such W has the property that Hw N
H(x,y) has positive measure. Moreover, up to a null set, H(x,y) is contained in the union
of the sets Hw N H(x,y). (Indeed, for each such W we have

ﬁO(HW A H(X7Y)) = 2 dv(X,y),
VEW

so since dy(x,y) = 0 unless V.E W for some such W, we get

ﬁO( U HW & H<X7 y)) = Z dV(X7 Y> = dX(X7 y) = ﬁO(H(Xa y)7

WeMazRel(x,y) VeRel(x,y)

as required. The first equality follows from the inclusion-exclusion principle, countability of
Rel(x,y), and the fact that each V is nested in finitely many (and at least one) of the W
by consistency.)

We define the family {W,};e; from Definition to be the set of elements W; €
MazRel(x,y) such that both

flio(H(x,y) n Hw,) > 0

and
fio(Ha N Hw,) > 0.

For the given x,y, let Ap,q(x,y) be the set of walls that separate x,y, belong to A, and
do not cross one of the Fyw, for W; in our family. Since Ap,q(x,y) n Wr is associated to a
set of halfspaces of measure 0 for each T € MaxzRel(x,y) and MazRel(x,y) is countable,
we have that H 4, ,(x,y) is @ countable union of measure 0 sets, so it has measure 0.

Let Apqq be the set of walls in A that do not have colour nested in one of the W; in
our family. Then for any x,y € D, we have Ap,qg 0" W(X,y) = Apad(X,y). Now, from the
definition of the measure fio (see [Fio20, p. 19]), this implies that # 4,,, has measure 0.
Indeed, H 4,,, has positive measure only if it has positive-measure intersection with some set
of halfspaces of the form H(x,y), and since all walls in A cross D, we can restrict to points
x,y in D. This shows that Condition is satisfied.

Verifying Definition : Suppose that there exist inseparable sets A, B of walls
such that Col(A) & U,Col(B) £ V and every wall in A crosses every wall in B. Suppose
that the sets H 4, Hp of halfspaces associated to A and B have positive fio-measure.

Consider families {U;} and {V;} satisfying Definition for A, U and B,V respec-
tively.

Specifically, each U; = U, each U; satisfies fio(Huy, n H.4) > 0, and all but a measure 0
subset of H 4 is contained in U;Hy,. Analogous properties hold for B, V,{V,}.

Among sets {U;} and {V;} with the given properties, choose these sets so that the levels of
the U;, V; are as small as possible; more precisely, suppose that {U;} cannot be replaced by
a set with the preceding properties by replacing some U; by a set {U;} with each U;» = Uj;
such a choice is possible by finite complexity.

Note that the first, second, fourth, and fifth bullet points from Definition . are
satisfied by these sets.

We will show that U; LV for all 7, j. This then provides a product region Fy, x Fy;, in
view of Proposition which in turn implies that all walls crossing the first factor — i.e.
all walls in Wy, — cross all walls crossing the second factor — i.e. all walls in Wy ;. Hence,
to verify the third bullet point in Definition , it indeed suffices to those that U;, V;
are orthogonal.

Fixie I,j€ J. Since H 4 n Hy, has positive fio-measure, there exist x,y € X such that

fio(Ha n Hu, n H(x,y)) > 0.
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We call x,y a pair of test points for U; and A. As explained in [Fio20) Section 3|, a set of
halfspaces has positive measure only if it has positive-measure intersection with H(x,y) for
some X,y. So test points exist. Likewise, we can choose w,z € X such that

fio(Hp n Hv,; nH(w,z)) > 0.

Moreover, by minimality of the levels of U;, V;, we can assume that U; € Rel(x,y)
and V; € Rel(w,z). Indeed, if not, then for all pairs x,y of test points for U;, we have
7y, (x) = 7y, (y), and by taking gates on Fyj,, we can assume that every element of Rel(x,y)
is properly nested in Uj;.

It follows that Fy, n I(x,y) is contained in the union of subsets obtained by projecting
Fw to I(x,y), where W = Uj is one of the countably many elements of Rel(x,y). Now,
if w e W(x,y) is a wall crossing Fy,, then (after excluding a set of walls associated to
a measure—0 set of halfspaces) w must cross some such Fw. So there is a set T'(x,y) of
W = U; such that fio(Hw N H(x,y) nHa) > 0 for W € T(x,y) and Hgq n H(x,y) is
contained in the union of the Hw.

Now replace U; by the union of the T'(x,y) as x,y vary over the test points for U;, A.
This yields a new family {U’} with the same properties mentioned above, but where U; has
been replaced by lower-level elements, contradicting our minimal level choice.

Hence we can assume that, for our given i € I, j € J and test pairs x,y and w, z for U;, A
and V;, B respectively, we have U; € Rel(x,y) and V; € Rel(w,z).

Since all walls in A cross all walls in B, we thus have a, b, c,d € X such that

e a b, c,d, in that order, form a median rectangle in X, and
e H({a,d},{b,c}) contains H 4 n Hy, n H(x,y) and U; € Rel(a,b), and
e H({a, b}, {c,d}) contains Hp N Hv, N H(w,z) and U; € Rel(a,d).

Indeed, we can take x = a,y = b, and then obtain d, ¢ by moving a, b, respectively, across
the walls in Hp N Hy,; N H(w,z). If necessary, we use [CDH10, Remark 2.23.(2)] to tighten
to a median rectangle. See Figure

XII 0y
w,__ a b
BNW(w,z) N Wy,
z  d c
—_———

ANW(x,y) N Wy,
FIGURE 12. Verifying Definition in a real cubing.

Now, by applying consistency to the median rectangle, exactly as in the proof Lemmal4.13,
we get that U; LV ;.

This completes the verification of Definition .

Finite depth and tangibility: We have shown that Col is a poset-colouring. Since the
index set has finite depth so does the poset-colouring. We are left to check that it satisfies
the tangible condition.
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Observe that if w is a wall crossing Fy, then by definition Col(w) = U so w € Wy.
Conversely, if Col(w) E U, then F () is, up to parallelism, contained in Fy, so @ crosses
Fy. Thus Wy is exactly the set of walls crossing Fy.

By construction, oy is therefore the set of halfspaces containing Fy, which is tangible
since, for any choice of basepoint xy € X), we have

ﬁO(O’UAO'XO) = dl(XOaFU) < 0,
where d; is the distance in X, as needed. ]

Combining Proposition with Theorem [5.1] gives:

Corollary 5.24 (Characterisation of real cubing among median metric spaces). A complete,
connected median metric space (X,dy, i) of finite rank admits a finite depth poset-colouring
which satisfies the tangible filter condition if and only if there is a real cubing (Y,§) and a
median-preserving isometry X — Y, where Y is equipped with the metric from Definition[{.2
and the median from Lemma[{.7.

Example 5.25. In Example @ we discussed that the trees of flats X and X/ are complete,
connected median spaces of finite rank and the orthogonal poset-colourings satisfy the tan-
gible condition. What are the real trees associated to the real cubing structures described in
Theorem [5.1] applied to the orthogonal poset-colourings? O

6. © CHARACTERISATION OF REAL CUBINGS WITH CLEAN CONTAINERS AND WEDGES
AMONG MEDIAN SPACES

We have characterised real cubings as complete, connected, finite-rank median spaces
whose walls admit a finite-depth poset-colouring satisfying the tangible filter property.

On the other hand, in Section [3.3] we have proven that the orthogonal poset-colouring
always exists for median spaces. In this section, we prove that the finite depth of the canonical
orthogonal poset-colouring characterises complete, connected median space of finite rank that
admit a real cubing structure with clean containers and wedges.

6.1. © An index set where 1 is an involution. In this section, we show that if a real
cubing has an index set with clean containers and wedges, then the real cubing admits a
different real cubing structure where the index is an orthogonal set in the sense of Defini-
tion Furthermore, the poset-colouring defined by the orthogonal index set is a finite
depth tangible orthogonal poset-colouring.

First, there is a relationship between clean containers and the orthogonality determined
nesting condition in Definition that can be used to check whether the latter condition
holds.

In this section, given a real cubing (X,§ ) with clean containers, we denote by Ut the
orthogonal complement of U, which is, by definition, defined whenever there is some V with

V.1U.

Proposition 6.1 (Double orthogonal). Let (X,§") be a real cubing such that § has clean
containers. Assume that § has a unique =-mazimal element S.
Then the following are equivalent:

e Complementation is an involution. For all U e § — {S}, we have that Ut is
defined and U = U.

e Orthogonality determines nesting. For all U,V € § — {S}, we have U & V if
and only if V+ = UL,
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Proof. Suppose that UL =Uforall UcS. Suppose that U = V = S. Then vic
UL, The properness of the nesting follows since, if V- = U", then, taking orthogonal
complements and applying the assumption, we would have U = V. Conversely, suppose that
V1 = UL, Take orthogonal complements to get U & V.

Now suppose that orthogonality determines nesting. Just from clean containers, we already
have for all U that U = Ut But since UL = Ut (again, just from clean containers),

if the nesting was proper, we would have from our assumption that Ut & UL, which is
impossible. Hence U = U+, (See also Lemma ) O

Remark 6.2 (Double orthogonal in hierarchically hyperbolic spaces). In this remark (which
the reader not interested in later applications to hierarchically hyperbolic spaces should skip),
we look ahead to the definition of a hierarchically hyperbolic space, Definition where
one can define the clean containers property for the HHS nesting and orthogonality relations
exactly as for real cubings (see Definition , and likewise define the "orthogonality de-
termines nesting" property in exactly the same way as for real cubings. If these properties
hold, then Proposition holds also — the proof used only the relations on the index set,
so works as well in the hierarchically hyperbolic setting as it does in the real cubing setting.
In some cases (see e.g. [HS20), Corollary 3.4|), naturally occurring hierarchically hyperbolic
structures have the property that the orthogonal complementation operator is an involution.

However, there are naturally occurring hierarchically hyperbolic structures with clean con-
tainers where orthogonal complementation is not an involution and so orthogonality does
not determine nesting. This is the case for the standard HHS structure on the mapping class
group of a surface S; see Section for a description. Figure shows a surface S and
two subsurfaces U,V such that U = (U1)*, because we disregard pants. Later, when we

FIGURE 13. The subsurface U consists of two (red) open one-holed tori and
a (red) open two-holed torus, and their boundary annuli. Its topological
complement is the yellow (open) subsurface, but since we disregard pants,
U+t is just the yellow once-punctured torus. So U & (U+)L.

work with HHSes, we often assume clean containers but not that orthogonality determines
nesting. O
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We also need an auxiliary lemma to allow us to assume our real cubings have nonempty
products.

Lemma 6.3. Let (X,3") be a real cubing and suppose that § has clean containers. Let
31 c F be the set of U such that Py # . Then (X,&l) 1s a real cubing with clean
containers.

Proof. By Proposition @, (X, 1) is a real cubing. So to conclude, it suffices to show that
Py # & implies Py # & when U is defined, i.e. when U is orthogonal to at least one
element. But this follows since the latter must contain the former. Indeed, if x € Py, then
mv(x) = py whenever U & V or UAV. Suppose that VAU* or Ut © V. Then we cannot
have VLU (which would force V £ U*) and we cannot have V © U (which would force
V1UY). So VAU or U V. So my(x) = py = ng, with the latter equality coming from
Definition . Hence x € Py, as required. O

Definition 6.4 (Isoorthogonal). Suppose that U,V have the property that, for all W € §,
we have ULW if and only if V1 U. Then we say that U,V are isoorthogonal. O

Remark 6.5. Notice that if the index set § has clean containers, then two elements U and
V are isoorthogonal if and only if either U+ = V= or each of U and V is not orthogonal to
any element of the index set.

Indeed, suppose that U and V are isoorthogonal and they are orthogonal to an element
W. Then U is orthogonal to V, so U™ is nested in V*, and symmetrically V1 is nested in
UL, so they are equal. Conversely, if UL = V+, then WLU implies W = Ut = V! which
implies WLV and conversely. O

The main proposition is:
Proposition 6.6. Let (X,3") be a real cubing with clean containers. Then X admits a real

cubing structure (X, §,.) such that

(X,3) has nonempty products;

o there is a unique =-maximal element S;

e no two distinct elements of §. are isoorthogonal;
[ )

[ )

U = UL, and U™ is defined, for all U # S;
for all U,V = S, we have U & V if and only if V+ = UL,
In particular, every U € §, is orthogonal to some element UL, unless U = S.
Finally, if § has wedges, then so does 3’;

Proof. By Lemma we assume without loss of generality that the index set § has a unique
maximal element, say S.

We also invoke Lemma and assume that (X, ") has nonempty products; in particular,
Lemma [4.12 (p—consistency) applies.

We define §. = § to be the subset of elements of the form U+t together with the maximal
element S. The relations in ST are induced from the relations in § .

Notice that U and ULt are isoorthogonal. Furthermore, UL is the unique S-maximal
element in the isoorthogonality class of U, and all the elements of the class are nested in
UL, Indeed, if V and U are isoorthogonal in § , then, from Remark we have that
Ut = V6 and so U+t = V4, Furthermore, since V © V44, we have that V & U+L.

Our goal is to prove that X admits a real cubing structure with index set §.., with the
given relations.

From Proposition we have that X admits a poset-colouring

Col : W — §,,
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where S; is the set of U for which Fy; is not a single point.
We define the map:

C’olwW—»S;m&;

as Col,.(0) = Col(w)*+ if Col(w)* is defined, and Col(w) = S if Col(w) is isoorthogonal to
S. To see that this is well-defined, note that if U e S;), then Fyyi1, which contains a parallel
copy of Fy, cannot be a point, and so Ut e 3’;,.

We need the following lemma:

Lemma 6.7. In the notation above, Col, is a poset-colouring that satisfies the tangible filter
condition and it has finite depth.

Proof. Let us begin with an observation. Suppose U™ is defined, i.e. U is not isoorthogonal
to S.

Let @ € Wy1.. Then by definition, Col(1) = Ut+. By definition of Col, we have that
Col, () = Col(w)**. As a consequence of the fact that Uttt = U', we deduce that
Col(w)*+ £ ULL. Indeed, since Col(w) = Ut it follows that UL = UL = Col(w)*
and so Col(w)*+ = UL, Tt follows that the sets WyL1 coincide for the two maps Col and
Col,.

Our goal is to show that Col,. is a poset-colouring, see Definition In order to do so, we
use the fact that Col is a poset-colouring and the observation that the sets Wys11 coincide
for the two maps.

Item holds since the set Wiy for Col, is the same as for Col, and since Col is a
poset-colouring, then that set is inseparable.

Item is an immediate consequence from the fact that %’; is a subset of § and the
relations are induced. Indeed if UL+, V1L € § satisfy the conditions of Ttem E, they do
so as elements of § and since Col is a poset-colouring, it follows that U and V are C-
incomparable in § and so in S’T

Let us now prove Item . Let UL, VI € 37 < § satisfy the hypothesis with respect
to some A as in Item ([II).

Let {W;} be the family of elements of § provided by Item for the poset-colouring
Col. We claim that the family {W31} of elements of §, satisfies the requirements. The
elements W%L exist since W; = U+, so W; LUL, so VVZl and hence W%L is defined.

Indeed, since W; = Wi, we have that Hyw, © Hyyrr. Then since fio(Hw, N Ha) > 0
by properties of the family {W;}, we have that ﬁo(?-[lvviu N Hy) > 0. Similarly, since

fio(Ha — U;(Hw, nHa)) = 0, we have that fio (HA —U;(Hwir HA)> =0.

Since W; = UL, V1L as shown above, we have that Will c ULL VL

This proves that Item holds.

Item is proven analogously - one considers the families {U;} and {V;} provided by
the poset-colouring Cool and checks that the families {Ui} and {V;1} satisfy the required
conditions.

This shows that Col,. is indeed a poset-colouring, and since § (and so §,.) has finite depth,
so does Col,.

We are left to check that it satisfies the tangible condition. Observe that if w is a wall
crossing Fy, then by definition Col(w) E U so w € Wy. Conversely, if Col(w) = U, then
Fco(w) 18, up to parallelism, contained in Fy, so w crosses Fy. Thus Wy is exactly the set
of walls crossing Fy. From the first observation, Wys11 coincide for Col and Col, and so
Wyt is exactly the set of walls crossing Fyyi1.
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By construction, o1 is therefore the set of halfspaces containing Fyy11, which is tangible
since, for any choice of basepoint xg € X, we have

ﬁO(O’ULLAUXO) = d]_(XQ,FULL) < 00,

where d; is the distance in X, as needed.
This finishes the proof that C'ol, is a poset-colouring of finite depth satisfying the tangible
filter condition. O

We now proceed with the proof of Proposition

We apply Theorem with the new poset-colouring Col, and give X a real cubing struc-
ture with index set §,.. Notice that . has clean containers because (U+4)+ = (UH)1L e F.

By construction, there is a unique E—maximal S, every other element U has a well-defined
orthogonal complement and satisfies UL+ = U, and so by Proposition orthogonality
determines nesting.

Nonempty products holds because it held for § . More precisely, the product region P11
for the new real cubing structure coincides with the product region for the old real cubing
structure, which was nonempty by assumption.

Finally, the wedge property persists since, in 3', we have

Ut AVE = (Ut v VHE = (U A V)
This concludes the proof. ]

Remark 6.8 (Real trees got blown up). The proof of Theorem shows how the real trees
change when passing from (X, §") to (X, J,) in the preceding proof. For each U+t the new
real tree is obtained from the original real tree by "blowing up" the point pg 11 to a subtree
(isometric to 7*V) for each V isoorthogonal to U*+. The new real tree for S is obtained
from 7*S by blowing up pd to a copy of 7*S whenever V is isoorthogonal to S (i.e. nothing
is orthogonal to V). This is reminiscent of a very similar modification to HHS structures
introduced by Abbott-Behrstock-Durham in [ABD21|. The blow-ups aren’t done explicitly,
rather they are an alternate way of looking at the real trees produced by the construction
used to prove Theorem

Another way to look at it: for each isoorthogonality class, we discarded all but the unique
C—maximal element V in the class. Then we considered the image of X in the product
[Tyi_ve 7°U, and noted that this image is a median subalgebra whose rank must be 1
since no two of the factors of the product correspond to orthogonal elements. Hence this
image is a real tree, and we use it as our new 7°U.

The advantage of the latter construction, and the version above using poset-colourings, is
that it’s easier to construct R-trees as quotients of X (or some Fyy) than it is to literally
blow up points in a real tree to obtain a large real tree. This is the same sort of insight used
in [ABD21] in the HHS case. O

6.2. © Characterisation of real cubings with clean containers and wedges. Now we
come to the main goal of this section:

Corollary 6.9. Let (X,dy, ) be a complete, connected median space. Then the following
are equivalent:
(1) (X,3") is a real cubing where § is an index set with clean containers and wedges;
(2) (X,dy, i) has finite rank and admits an orthogonal poset-colouring of finite depth;
(3) (X,dy, @) has finite rank and the canonical orthogonal poset-colouring has finite depth.

Proof. Clearly implies . On the other hand, from Proposition |3.27 it follows that if an
orthogonal poset-colouring has finite depth, so does the canonical orthogonal poset-colouring
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and since the canonical poset-colouring exists, by Proposition @, it follows that implies
B).

Let us show that implies . Assume that X is a complete, connected median space
of finite rank and that the canonical orthogonal poset-colouring has finite depth. From
Theorem [3.13, we deduce that the orthogonal poset-colouring satisfies the tangible filter
condition. Recall that the orthogonal poset-colouring has clean containers and wedges.

In order to give a real cubing structure to the median space with clean containers and
wedges, one would like to invoke Theorem [5.1] applied to the orthogonal poset-colouring and
argue that the index set inherits the relations from the orthogonal poset-colouring which by
definition has clean containers and wedges. However, the real cubing structure from Theorem
is obtained from a poset-colouring, not necessarily an orthogonal one, and in particular,
in Definition we defined the orthogonality between elements of the index set precisely
when there is a median-preserving isometric embedding Fy x Fy — X. Therefore, to endow
the index set with clean containers and wedges, one would like to relate the orthogonality in
the orthogonal poset-colouring with the orthogonality defined in the index set.

The key point in relating the two notions of orthogonality is via the relation between the
set of walls Wy nested in a colour and the set of walls that cross the corresponding subspace
Fy, which as a consequence of Theorem differ in general by a set of measure 0.

In order to establish the correspondence between the two different notions of orthogonality,
we will modify the domain of the orthogonal poset-colouring by removing what we call
redundant elements, see definition below, and show that with this new poset-colouring, the
two notions of orthogonality coincide.

Let (X, (3,2, L2)) be the real cubing obtained from Theorem applied to the orthog-
onal poset-colouring Col; : W — (§ ,Z,L1). From the definition, the nesting relations
coincide in the index set and the orthogonal poset-colouring but the orthogonality relations
14 and 1o may differ.

From Proposition @, the real cubing (X, (§,Z, L2)) (which has wedges and clean con-
tainers) defines a poset-colouring Coly : W — (§°,C, Ly), where for all h € W, Coly(h) is
defined to be the C-minimal element U in § such that h crosses Fy.

Definition 6.10 (Redundant). We say that U € §~ is redundant if there exists V & U such
that FV = FU-
We let S+ denote the set of U € § such that
e U is not redundant, and
e Fy is not reduced to a single point.

Lemma 6.11. Coly(W) c T, .

Proof. Let w be a wall and let U = Cola(w). Since by definition @ crosses Fy, the latter
space cannot be a single point. Moreover, if V & U and Fy = Fy, then w crosses Fy,
contradicting that Cols(w) = U. So U must be non-redundant, whence U € S; n

Lemma 6.12. Let U e (§,C, 19) and suppose that Fy is not a single point. Then there
exists Uy = U such that
e U; e 8’;, and
e Fy, = Fy, and
e U; is the unique =-minimal element of § such that Col(w) & Uy whenever
crosses Fy.

Proof. Let {V;}icr be the set of elements of the form Cols(w) where w is a wall crossing Fy.
Let U; be = minimal among the set of all V € § such that V; = V for all i.
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To see that Uj exists, it suffices to observe that V; = U for all ¢, since each wall W crossing
Fy has colour nested in U.

Recall that by definition the orthogonal poset-colouring has wedges and since the nesting
relation in the index set, see Definition coincides with nesting relation in the orthogonal
poset-colouring, the index set (§°, =, Lo) inherits the wedge property. Then, uniqueness of
U, follows from the wedge property in the index set. It also follows from the wedge property
that U; = U. Indeed, for any @ with Cola(w) E U, we have Cola(w) = U; A U, so by
minimality, U; = U; A U E U.

Hence Fy, < Fy (for appropriately chosen parallel copies). Now, suppose that this
containment is proper. Then there exists a wall w such that @ crosses Fy but not Fy,, so
Cola(w) = U, a contradiction. Thus Fy = Fy,.

Finally, if Fy = Fy,, then each w crossing Fv has colour nested in V, so V &£ Uy, whence
U; is non-redundant and hence in &r O

Lemma 6.13. Let U,V € S:r c § . Then U Ly V in the orthogonal poset-colouring if and
only if U 1oV in the index set (F ,Z, La).

Proof. Let U,V € S:r be such that U 1; V and let Fy and Fv the the associated closed,
median-convex subspaces. From the definition of the orthogonal poset-colouring, we have
that each wall in W{; crosses each wall in W\l,

From Theorem @, we have that for all U € §°, the set of halfspaces H(U) associated to
walls with colour nested in U and the set H(Fy) of halfspaces that cross Fy differ by a set
of measure 0. Therefore, the sets H(U) nH(Fy) and H(V) nH(Fv) differ from H(Fy) and
H(F'v) correspondingly by a set of measure 0 and each wall in W{; n W, crosses each wall
in W{, N Wry,. Then, from Proposition it follows that there exists a median-preserving
isometric embedding from Fy x Fy to X and from the definition of the orthogonality in the
index set, we have that U 15 V.

Suppose now that U 1o W/ ie. there is a median-preserving isometric embedding from
Fy x Fw to X and so the set of walls Wy, crosses the set of walls Wgy .

From the definition of the orthogonal poset-colouring, the set of walls that cross Wg,
coincides with W\l, for some V € (3', C, L1). Since the orthogonal poset-colouring has clean
containers, we have that Wg, < W%, 1.

Since Wi; n Wey © Wi n Wy = Wy, v © Wi and Wi A Wey, differs from Wy, by a
set, of measure 0, so do Wll,T/\V . and Wy;. Tt follows that Fy;,v1 = Fy. Since by assumption
Ue S:r, U is non-redundant and so U A V+ = U.

Since each wall in Wgy, crosses each wall in Wg;, from the definition of V we have
that Wg,, < Wv. A similar argument as the one above, shows that the sets of halfspaces
associated to the sets of walls W‘lN v and W, differ by a set of measure 0 and so Fw v =
Fw and from the non-redundancy of W we deduce that W = W A V. Now, since W AV &
V,UAVEC V4Eiand V Ly V) we deduce that W = (W A V) Ly (U A V1) = U, that is
W 1, U. O

Lemma 6.14. Let (X,§") be the real cubing as above. Then Coly : W — 3; is a poset-
colouring with wedges and clean containers. Furthermore, (X,S:r) 1s a real cubing with clean
containers and wedges.

Proof. By Lemmalﬂ, Coly(F") = §.. and by Lemma @, the index set (F,, =, Lo) satisfies
that the nesting and orthogonality coincide with the restriction of 3"; c(F,c, 1))

Let us show that &r has wedges. Let W £ U,V € S; Since SJF c § and § has
wedges, there exists UA VegF . Let (U A V); C (U A V) be as in Lemma [6.12. We show
that (U A V), is the wedge of U,V in §,. Let W € §. be such that W £ U A V. Since



R-CUBINGS AND HHG 87

W C UAV, from Lemma we have that Fw < Fu,v = Fy,v), and so H(Fw)
HF wav),)-

Since from Theorem [2.18, we have that H(Fw) and H(W) differ by a set of measure 0,
it follows that H(W A (U A V)1) and H(Fuy) n H(Fu.vy,) = H(Fw) differ by a set of
measure 0 and since H(Fw) and H(W) also differ by a set of measure 0, we conclude that
H(W A (UAV)1) and H(W) differ by a set of measure 0. It follows that Fw . (u.v), = Fw
and since W is non-redundant, we have that W A (U A V); = W and so W C (U A V).
Therefore, (U A V); is the wedge in §, .

Let us now show that it has clean containers. Let U € 3; Let Ut € §° and let (UL)l € &r
be as in Lemma Then (U1); is the clean container in §,. Indeed, since (Ut); £ Ut
and U 1 Ut we have that U L (U1);. Suppose that W e S+ satisfies that W L U, then
W C U'. An argument similar to the one proven for the wedge shows that Fyw = Fy A(ULY,
and from non-redundancy, we deduce that W = W A (U1); = (U1);.

Finally, given the poset-colouring Cols : W — S+ and applying Theorem we obtain
that (X,S;) is a real cubing and by construction, the orthogonality in the index set and in
the poset-colouring Coly is given by a median-preserving isometric embedding of Fy x Fv
in to X and so the two notions of orthogonality coincide. Since we have seen that S:r has
wedges and clean containers, so does the real cubing. This concludes the proof. O

This concludes the proof that implies .

To finish proving Corollary we are left to show that implies , that is, if (X,§")
is a real cubing with clean containers and wedges, then it has an orthogonal poset-colouring
of finite depth, as follows.

Proposition allows us to assume that (X, 3.) has wedges and clean containers, § has
a unique =-maximal element, and orthogonality determines nesting, i.e. (§,Z,L) is an
orthogonal set in the sense of Definition |[3.7, The finite complexity assumption implies that
the depth is finite.

Now, since (X,Sl) is a real cubing, from Proposition it admits a poset-colouring
map Col : W — Sl that sends 4 € W to the E-minimal U € gL such that @ crosses Fy. In
fact, this poset-colouring was used in the proof of Proposition

We are left to show that this colouring is an orthogonal poset-colouring. This amounts to
proving the following claim.

Claim 8. If &, 0 are walls, then they cross if and only if Col(h) LCol(5).

Proof of Claim[8 Suppose ﬁ, D cross.

Choose a € hnv,be hnv*, ce h* nv* de h* nwv, which is possible since h and 9 cross.
Applying [CDHI10, Lemma 2.26], we can assume that a, b, ¢, d is a median rectangle.

Let Rel(a,b) be the set of V € §| such that 7y (a) # mv(b) and define Rel(a,d) analo-
gously. Now, {a, b, c,d} is the image of an embedding of {0,1}? in X as a median subalgebra
(this is exactly what it means to be a median rectangle), so by the proof of Lemma @ in

the case n = 2, we have that A 1B whenever A € Rel(a,b) and B € Rel(a, d).
Let U = \/Aeliel(a,b) A and let V = \/BgRel(a,d) B.
Observe that h crosses Fyy and so Col(h) £ U. Similarly, Col(9) £ V. So, to conclude

that Col(h)LCol(0), it suffices to show that ULV.
We have that B £ /\AeRel(a,b) At whenever B € Rel(a,d). From the definitions of wedges,

joins, and orthogonal complements, it follows that B1U. But then U = /\BeRel( a,d) B1, so
ULlV.
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Conversely, suppose that C’ol(ﬁ)J.C’ol(ﬁ). Then h, 9 respectively cross Fcol(iz)’ Foos) and

Proposition |4.37 provides a convex subset Fcol(ﬁ) X Feoo(s), 80 h and o cross. This proves
the claim. 0

We have proven the equivalence and so we conclude the proof of Corollary U

Example 6.15. Notice that the staircase, see Example[3.11, is a median space of finite rank.
As discussed in the Example, the staircase can be given a real cubing structure (and so a
finite depth tangible poset-colouring). However, since the orthogonal poset-colouring of the
staircase has infinite depth, it cannot admit an index set with clean containers and wedges
(although the orthogonal poset-colouring is tangible).

Similarly, the 3-dimensional staircase, see Example is a CAT(0) cube complex and
so it can be given a real cubing structure, see Example [4.25. In this case, the orthogonal
poset-colouring has infinite depth and it is not tangible. In particular, the 3-dimensional
staircase cannot be given a real cubing structure with clean containers and wedges.

Also recall that there are median spaces of finite rank and infinite depth orthogonal poset-
colouring that cannot be given a real cubing structure; see Proposition [4.28. O

6.3. Automorphisms of (X, §) from colour-preserving isometries. In this subsection,
we consider a complete, connected, finite-rank median space (X,d;, ) and a finite-depth
poset-colouring Col : W — § of the walls of X, satisfying the tangible filter condition.
Theorem provides a real cubing structure (X,§").

Let T be a group and let I' — Isom(X) be an action by (necessarily median-preserving)
isometries. This gives a natural I'-action on W. Suppose also that T' acts on § in such a
way that Col is '-equivariant and the action of I' preserves the partial ordering =.

For each g € I and each U € §, observe that gFy = F,u.

It then follows that I" preserves the relation L, and hence the relation .

Given g e I' and U € §°, we define an isometry g : 7*U — T°*gU as follows. For each
p € T*U, choose x € Fy projecting to p, and let g(p) = myu(gx). Since g preserves colours of
walls and measures of sets of halfspaces, this is independent of the choice of x, and defines an
isometry. By construction, gry(x) = meu(gx) for all g, U,x. From this, and the definition

of the point pg, we have gpg = pgg whenever U & V or ULV. This verifies the properties
demanded by Definition [4.30, so:

Proposition 6.16 (R-cubing automorphisms from colour preserving isometries). Let
(X,dy, ) be a complete connected finite-rank median space and let Col : W — F~ be a finite-
depth poset-colouring of the walls satisfying the tangible filter condition. Let T' — Isom(X)
be a group action such that, giving W the natural T action and equipping § with an order-
preserving I' action, the poset-colouring Col is I'—equivariant. Then the action of I' on X is
an action by R—cubing automorphisms on the R—cubing structure from Theorem [5.1]

We will use Theorem and Proposition [6.16]in the study of asymptotic cones of hierar-
chically hyperbolic spaces.

6.3.1. © Automorphisms and orthogonal sets. In the next theorem, we show that if the real
cubing X has an index set § such that (§ ,Z, L) is an orthogonal set, then any isometry
f: X — X induces an automorphism of the real cubing (X, ). Notice that by Corollary
[6.9] the existence of an index set with clean containers and wedges assures the existence of
an orthogonal index set of finite depth. In particular, if a real cubing has an index set which
is the canonical orthogonal set, then this structure is minimal and preserved by the group of
isometries of X.
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Theorem 6.17. Let (X, ") be a real cubing and assume that (F ,E, L) is the canonical
orthogonal set, see Section[3.5.
If f: X — X is an isometry, then f induces an automorphism of the real cubing (X,§),

see Definition [4.30

Proof. Since (', =, 1) is the orthogonal set, in particular it has clean containers and wedges
and so by Corollary it has an orthogonal poset-colouring of finite depth, Col : W — §
that sends a wall & € W to the C-minimal U € § such that @ crosses Fy. Recall that for
U e § we denote by Wy the subset of walls @ with colour Col(%) nested in U. Notice that
by construction Wy is non-empty, since in Definition [3.15 we only consider non-empty sets
of walls and the index set is defined as a quotient of a subset of that set.

Observe that, since X is a median space, the isometry f : X — X preserves the median
structure and so it has to preserve the set of walls. In particular, the isometry f induces a
bijection on the set of walls, which abusing the notation we denote again by f: W — W.

We next show that the isometry f induces a bijection on the index set § which makes
the map Col equivariant. More precisely, we claim that for all U € §, there exists V € §
such that f(Wy) is Wy (up to a subset of walls of measure 0).

Suppose towards contradiction that this is not the case, then up to taking f~! if necessary,
we can assume that f(Wy) is not contained (up to measure 0) in any Wy;. Then the set
{V;} = § such that f(Wy) n Wy, has positive measure has at least 2 elements. Let U be
C-minimal with this property.

Each wall in f(Wuy) crosses each wall in f(Wy1). If fWy1) ¢ Wy, then Item [IIIin
Definition and Remark there exists Vi £ V; such that f(Wu) n Wy, = Wy and

JWyr) © Wy,,1. Hence without loss of generality, it suffices to consider V; in the set such
that f(Wy1) € Wy

Since § is an orthogonal set, in particular elements have different clean containers and
SO V,L»L # VjL for ¢ # j. Furthermore, since orthogonality determines nesting and f(WyL) <
Wy 1, we have that f(Wy1) € Wy L.

It follows that the each wall in f (Wu) n Wy, crosses each wall in Wy, and fOWy1) &
inl. Again from Item in the definition of poset-colouring, there exists U; £ U such
that fOWu) n Wy, € f(Wu,). Since f(Wuy) is contained in the union of Wy, it follows
that U = \/ U;. Since U is chosen to be the nest-minimal with the property that f(Wy)

el
does not coincide up to measure 0 with Wy and U; = U, we have that f(Wy,) is Ww, for
some W;. From the above it follows that f(Wy) = f(W\ vu,) coincides up to measure 0

iel
with W\, w, - a contradiction.
iel
Therefore, the isometry f induces a bijection on the index set that respects nesting and
orthogonality and it makes the map Col equivariant. Therefore, it induces an automorphism

of the real cubing (X,§"). O

7. © CHARACTERISATION OF REAL CUBINGS WITH SYSTEMS OF EQUATIONS AND
INEQUALITIES

In this subsection, we give yet another characterisation of real cubings. We will work with
Definition later in the paper, since that definition is more visibly related to asymptotic
cones of hierarchically hyperbolic spaces (a relationship that becomes more apparent if one
compares Definition to Definition . However, we feel it clarifies matters to have the
following definition in terms of semialgebraic sets.
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The are two (independent) ideas that are at the core of this characterisation. Firstly, in
a real cubing, we associate real trees to elements of the index set. However, as we will see
below, real trees can in turn be given a real cubing structure where all the trees associated
to the elements of the index set are connected subspaces of R. This allows one to think of
real cubings as subspaces of ¢1(R). Secondly, real cubings are precisely the set of consistent
points, see Definition[4.2] Consistency is a property that involves only pairs of elements of the
index set and can hence be checked by examining the projection of the candidate real cubing
into planes coming from pairs of coordinates. In Definition below, we give an algebraic
description in terms of semialgebraic sets of how this projections into pairs should look like,
see also Figure Roughly speaking, we show that having semialgebraic projections into
pairs characterises a real cubing.

Given a set §, let £1(F") be the set of functions f : § — R such that

1flr =D} 1f(U)] < 0.

Ueg®

We emphasise that § has no restriction on cardinality, but that any f € ¢1(F ) has
countable support, as before. This is consistent with Notation we are considering the
special case where all the R-trees are copies of R based at 0.

We usually denote a function f : § — R by a tuple (zU)yeze, where ry = f(U).

Definition 7.1 (Cubical system, U, V-semialgebraic set). Given distinct U,V € &, and two
connected subspaces I(U) and I(V) of R, a (U, V)—cubical system (relative to I(U),I(V))
is a system of equations and inequalities in the variables zy, v of one of the following forms:

e the set of at most four inequalities stating that xv € I(V) and zy € I(U), in which
case we say U,V are independent;
e the following additional condition: for some a € I(U), be I(V)
e zyu—a=0and zy € I(V) or
e rv —b=0and zy € I(U).
In this case we say that U,V are quadratically related;
e or the following alternate additional condition: for some a € I(V) and some b,c €
I(U), where b # c,
e rv —a=0and zy € I(U) or
e zy—b=0and v € I(V) and zy < a or
e zy—c=0and xv € I(V) and zvy > a.
In this case, we say that V dominates U.
Given a (U, V)-cubical system relative to I(U), I(V), let X(U, V) be its solution set in

(1({U,V}) = R2. This is a semialgebraic set in R?, in the sense of real algebraic geometry,
see [BCRO8]. See Figure O

In other words, X (U, V) is one of three types of median subalgebra of I(U) x I(V).

Remark 7.2. In Definition above, when we define domination, the requirement that
b and ¢ be distinct can be avoided. Indeed, in the case that b = ¢ the definition of “V
dominates U” degenerates into “V and U are quadratically related”. However, abusing the
definition, in the case when b = ¢, sometimes it will be convenient for us to declare that V
dominates U. This does not cause problems provided that we take care that only one of the
two alternatives takes place: either V dominates U or U dominates V. U

Definition 7.3 (Cubical semialgebraic set). For each U € §°, let I(U) be a fixed connected
subspace of R.
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FIGURE 14. The semialgebraic set X(U, V) in the three cases. Left to right:
independence, quadratic relation, domination.

Suppose that for each distinct U,V € § , we have chosen ezactly one cubical system
relative to I(U),I(V), whose solution set is the semialgebraic set X (U, V). Let Pyyv :
(1(3") — €1({U, V}) be the natural projection.

Then
X =[] Poy(X(U,V))
U#V
is a cubical semialgebraic set in ¢1(F") provided that Py v (X) = X(U, V) for each distinct
pair U, Ve§ . O

Definition 7.4 (Finite depth, finite dimension). The cubical semialgebraic set X < ¢1(F")
has finite dimension if there is a bound on the cardinality of pairwise independent sets.

A cubical semialgebraic set X < £1(F") has finite depth if there exists N such that any
N + 1 distinct elements of § contain either a quadratically related or independent pair.

As we shall see in Lemma below, domination is a strict partial order on §°, hence in
fact we require that there be a bound on the length of chains in the domination order.

O
Definition 7.5 (R-cubing). A cubical semialgebraic set X < ¢1(F ) satisfying the finite
depth and finite dimension conditions is a real cubing (or R—cubing). O

Remark 7.6. Notice that by construction, the real cubing X (in the sense of Definition
is obtained from ¢; (3) by deleting a collection of quarterspaces and halfspaces. Recall that
a U-halfspace in X is a subset of the form Pg'(R), where U € §°, and Py : 4(F°) —
£1({U}) = R is the natural projection (which is surjective), and R is a ray in ¢;({U}).

In our situation, the various I(U) will all be closed in R, so we can take each R to be an
open ray.

A (U, V)—quarterspace is the intersection of a U-halfspace and a V-halfspace for U # V.
By continuity of natural projections (they are lipschitz), halfspaces and hence quarterspaces
are open in ¢1(§"). The viewpoint of real cubings as complements in a product of collec-
tions of quarterspaces is partly inspired by the notion of the Guirardel core of a product of
trees |Gui05], and by the fact that any median subalgebra of the O-skeleton of a CAT(0)
cube complex is obtained by deleting halfspaces and quarterspaces. O

We next aim to prove that this definition is equivalent to Definition [4.2] Along the way,
we also compare the class of cubical semialgebraic sets to the class of median metric spaces.

Lemma 7.7 (Cubical semialgebraic implies complete). Let X < £1(F") be a cubical semi-
algebraic set and suppose that I(U) is closed for all U € § . Then X, equipped with the
subspace metric di, is complete.
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Proof. We first show that £1(F") is complete.

For each n € N, let f*: §° — R be a function such that Yy; |f"(U)| < oo, and such that
(f™)n is a Cauchy sequence in the metric d;.

For each n,m € N, let S;Lm be the set of U e § for which f*(U) # f™(U). Then since
di(f™, f™) < o0, the set §, ,, is countable. So §, = Unm.n Frnn is countable. Thus (f™), is a
Cauchy sequence in the isometrically embedded copy £1(%,) of £1(N) in ¢1(F"). Since ¢1(N)
is complete, it follows that (f™) has a limit in ¢1(F"), as required.

To deduce completeness of X, we use the structure of X described in Remark Since
halfspaces and hence quarterspaces are open in £1(g ) and by construction, X is obtained
from £1(F") by deleting a collection of quarterspaces and halfspaces, it follows that X is
closed in £1(F"). Since the latter is complete, so is X. O

We observe that £1(F") is a median metric space. Indeed, given summable functions f, g, h :
§ — R, we can define m : § — R by letting m(U) be the median of f(U), g(U),(U) e
0,({U}) = R. It is routine to check that this product median, which we denote p, makes
£1(F") a median metric space; see Section

Lemma 7.8 (Cubical semialgebraic implies median). Let X < ¢1(F") be a cubical semi-
algebraic set. Then X with the metric inherited from the €1 metric on {1 (S') is a median
subalgebra of £1(F"). Hence (X,d1, p) is a median metric space.

Proof. Tt is immediate to check that for all U, V the semialgebraic set X(U, V) is a median
subalgebra and so is Pﬁlv (X(U,V)). Indeed, this amounts to saying that the complement
in R? (with the product median and ¢; metric) of a collection of four quarterspaces and at
most four halfspaces is a median subalgebra.

By definition the cubical semialgebraic set X is therefore the intersection of median sub-
algebras and hence is a median subalgebra. Since d; and g make ¢1(F ) a median metric
space, the same holds for any median subalgebra (with the subspace metric), as required. [

Proposition 7.9. Let X < (1(F") be a cubical semialgebraic set with all I(U) closed. Then
X is connected. Hence (X,d1, p) is a complete geodesic median metric space.

Proof. Lemma|7.§ showed that X is a median metric space, and Lemma/[7.7|showed that it is
complete. Once we prove connectedness, Lemma 4.6 of [Bow16b| will imply that the metric
on X is geodesic.

Claim 9 (Finite cube case). If § is finite, then X is connected.

Proof of Claim[9 We use induction on the number k of sets in the intersection X =
Nusv Pﬁl\,(X(U,V)) to show that X is a connected median subalgebra. Note that &
is always finite since so is § .

Since P{LIV(X(U, V)) is connected, we have the base of induction. By induction suppose
that if the number of sets in the intersection is less than k, then X is a connected median
subalgebra of £1(F").

To simplify the notation, write X = (7),_; ; X;. Suppose that X is not connected and
let x,y €(),_; 4 Xi be so that Py v(x) = Py v(y), where X(U, V) = X;.

Since x,y € ﬂi:l,...,k—l X; and ﬂi:L_”’k_l X; is a connected median subalgebra, it follows
that the interval I, _1(x,y) is a connected subspace of ﬂi:l,...,kq X;. The projection Py v is
median preserving and Py v (x) = Py,v(y), hence for any z in I;,_; (x,y), we have Py v(z) =
Py v(x) = Puv(y). It follows that the interval I,_;(x,y) < Pﬁ’lv(PUy(x)) and the fibres
of points under Py v are connected. Hence, if X is disconnected, so is Py, v(X), which is
X (U, V) by definition - a contradiction. O
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Claim 10 (Reduction to finite cube case). X is connected.

Proof of Claim[I0. Let x,y € X. Let I(x,y) be the median interval in £1(F") between x,y.

Observe that
I(Xa y) = H [XUa YU]a
Uel

where U is the (necessarily countable) set of U for which xy # yuy. The above product,
equipped with the ¢; metric inherited from ¢1(F"), is compact — since

Z Ixu — yul| < o,
Ueld
the /1—metric topology on I(x,y) coincides with the Tychonov topology.
For each n € N, let U,, be the set of U € U with |xy — yu| > %, which is finite.

Let
I, = H [xu,yul,
UelU,,
and let p, : I(x,y) — I, be the natural projection.

Let x,, = pn(X),¥n = pn(y). Let X, be the cubical semialgebraic set in I, = ¢1(Uy,)
obtained by imposing the defining conditions from Definition used to define X on the
pairs U,V e U,,.

Note that p,1(X,) < p,,}(X;) when n > m, and

X I(xy) =[] pn'(Xn),

n=1
and that
p;I(Xn) = Xp X 1_[ [XUaYU]'
U¢l,,

Now, by Claim @ there exists a geodesic 7, : [0, L,] — X,, joining x,, to y,. The product
structure of p;1(X,,) mentioned above allows us to lift ~y, to a geodesic a, : [0, M,] — I(x,y)
such that

° an(o) =X, an(Mn) =Y
e the image of oy, lies in p,, 1(X,,).

Since I(x,y) is compact, after passing to a subsequence, the functions «;, converge uni-
formly to a function « : [0, M] — I(x,y) such that a(0) = x,a(M) = y. Now, for any n and
any m = n, we have that im(a,,) < p,, }(X,), so im(a) € X n I(X,y), i.e. X,y are joined by
a path in X n I(x,y). O

The preceding claim completes the proof. O
Lemma 7.10. Let X < /4 (3) be a cubical semialgebraic set. Then

o domination is a strict partial order on § ;
e if V dominates U and W and V are independent, then U and W are also indepen-
dent.

Proof. By definition, U does not dominate U and if V dominates U, then U does not
dominate V. Here we are using that each pair (U, V) is assigned exactly one of the sets of
equations/inequalities, and that in the event of domination, b # c.

We next address transitivity: if V dominates U and W dominates V, then W dominates
U.

First we define some notation, Y (U, V) and Z(U, V), according to how U,V are related.

Suppose that V dominates U. By definition, then we have the following system a, b, c € R,
either zv —a=0,orzyv —a>0and 2y —b =0, or zv —a < 0 and xy — ¢ = 0, see Figure
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FIGURE 15. Transitivity of domination.

Recall that we denote its solution set by X(U, V). In this case, we decompose X (U, V)
as a union of sets Y (U, V) and Z(U, V). Define

Y(U,V) = {(zu,zv) | av > a,zy = b} U {(zu,zv) | zv < a,2u = ¢};
Z(U,V) = {(zu,zv)|zv =a}.

Clearly, X (U, V) is the union of Y(U, V) and Z(U, V).

Suppose that U and V are quadratically related. As above, we decompose X (U, V) as a
union of Y(U,V) = Xy = {(zy,zv) | zu = a} and Z(U, V) = Xy = {(zy,zv) | zv = b}.

Finally, suppose that V and U are independent. For convenience, we introduce the fol-
lowing notation set Y(U,V) = Z(U,V) = X(U, V).

We are now ready to check transitivity. Suppose that W dominates V, which in turn
dominates U. We show that in this case W dominates U.

By definition, we have that for some a,b,c € R, either v —a = 0, or zv — a = 0 and
2y —b=0,0r zv —a < 0 and zy — ¢ = 0; and for some a’, V', € R, either zw —a’ = 0, or
aw—a =0and 2yv —V =0, or zw —a’' <0 and zv — ¢ = 0. It is immediate to check that
Puw(Pgy(X(U, V))n Py (X(V, W))) is the semialgebraic set X'(U, W) defined by the
collection aw —a' =0, or 2w —a > 0and 2y —b =0, 0or sw —d’ < 0 and zy —c = 0.
Define Y/(U, W) and Z'(U, W) analogously to Y (U, W) and Z(U, W), correspondingly.
By definition X/(U, W) =Y’ (U,W) U Z'(U,W) .

We show that X(U, W) = X'(U, W). We first establish that

X(U,W)= () Puw(PrsX(R,9))).
R,SeF*
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Indeed, by definitions of X and X(U, W) we have the following equalities, while the last
inclusion holds in general

X(UW) =PywX)=Puw( []| PasX®R.9)c (] Puw(PrsX(®R,S)).

R,Se§* R,Se3*
Since the intersection is taken over all R, S € §', setting (R, S) = ( W) we have that the
last intersection contains the term PU,W(PU1W( (U,W))) =X(U ) hence

ﬂ PU,W(Pg,ls(X(R7 S))) < X(U7 W)
R,SeF’

which establishes the desired equality.
Since X'(U, W) = Py w(Pgy(X(U,V))n Py (X(V, W))), it follows that X(U, W)
X'(U,W). We prove the converse, write

(| Puw(Prs(X(R.9) = (] Puw(Prs(Y(R,S)) v Puw(Pgs(Z(R,S))).
R,Se3* R,Se3*

Rewrite the (infinite) intersection of (single) unions as (infinite) union of (infinite) intersec-
tions. In this union, consider the term corresponding to

Y (U, V), where {R,S} = {U,V};

Y (V, W), where {R,S} = {V,W};

XRg, whenever U = S and they are quadratically related;

Z(R,S), if R dominates S = U;

Y (R,S), where R = U dominates S;

either Y(R, S) or Z(R, S) in all other cases (i.e. whenever R, S ¢ {U, V} or whenever
R and S are independent);

It is routine to check that this term is exactly Y'(U, W).

The construction for the term containing Z'(U, W) is analogous. Therefore, X(U, W) =
X'(U, W).

Finally, we show that if V dominates U, and W and V are independent, then so are U
and W. As above, we have that for some a,b,c € R, either v —a =0, or zv —a = 0 and
zu—b=0,orzyv —a<0and zy —c=0. Since V and W are independent, the projection
of X on to ¢1({U, V,W}) contains points of the form (b, a,p) as well as (¢, a,p), where p is
arbitrary.

By Lemma X is a connected median subalgebra of £ (g ) and since the points (b, a, p)
and (c,a,p) belong to the projection of X to ¢1({U,V,W}), it follows that so does the
geodesic connecting the two points. Since p is arbitrary, we conclude that any point of the
form zw = p, rv = a and zy = ¢ also belongs to the projection of X to ¢1({U,V,W}),
here ¢ is arbitrary and hence U and W are independent; see Figure This concludes the
proof. O

Proposition 7.11. Let X < £1(F") be a cubical semialgebraic set satisfying the finite depth
and finite dimension conditions, with each I(U) closed in R. Then X, with the inherited ¢,
metric, is an R—cubing in the sense of Definition[{.2. In particular, X is a complete geodesic
space.

Proof. The underlying index set is § , and the R-tree 7* associated to U is an isometric
copy of R. So, ¢1(F") is naturally isometric to the ¢; space from Notation We define
relations = and L on § by letting = denote domination, and L denote independence. For
C—incomparable, L—incomparable U, V, we write UAV (this corresponds to a quadratically
related pair).
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Xw
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FIGURE 16. If V dominates U, and W and V are independent, then so are
U and W.

By Lemma C is a partial order, and by hypothesis, there is a uniform bound on the
length of chains. Again, by hypothesis, there is a uniform bound on the size of pairwise-
independent sets.

Thus far, we have produced the complete geodesic space (X,d;), the index set §, the
associated R—trees, and the relations from Definition We have verified finite complexity
(Definition [4.2] (4)). We have also verified that the metric on X is just the subspace metric
inherited from the ¢; metric on 61(3'), as demanded by Definition item .

To verify Definition item , observe that the relation 1 is symmetric and anti-
reflexive by definition. Moreover, by Lemma @, if U,V,W € § satisfy U = V and
VIW, then ULW.

If UAV, then X(U,V) is, by definition, the solution set of (xuy — au)(xv — av). Let
pg = ay and ,0¥ = ay.

Similarly, if U & V, then we can recover the value pg, and the function py; (constant on
each component of R — p¥) from the (U, V)-cubical system (see Definition . So, we have

verified Definition .

Claim 11. Suppose that U = V or ULV, and p\% and p% are defined and single points,
then pgv = p%.

Proof of Claim[11. We consider the case U & V, the argument in all the other cases is the
same.

Since p{,{, and p¥v are defined and single points, then either U E V E W or VAW and
either UAW or U C W.

We first consider the case U = V & W. We have the following system:

UCV: xy=ayVv(xyv<ay Axy=by)V (Xv >ay A Xy = cy);
(1) VEW: xw=aw Vv (Xw <aw A Xy =by) vV (Xw > aw A Xy = ¢V );
UCW: xw =dy v (xw < ayy A xv =) v (xw > ay A Xv = cy)-
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We have p¥ = (0,av,0), pyy = (0,0,aw), py = (0,0,asy) in (xu,Xv,xw)-coordinates.
Suppose towards contradiction that aw # afy.

In this case, the solution set of the system formed by last two collections of system
is formed by 2 rays and 2 lines and has 2 connected components, namely, lines (in
61({U,V,W})) defined by xw = ay,xv = cv and xw = aw, Xy = by and rays defined
by xw > ayy, Xv = ¢v, Xy = ¢y and xw < aw, Xv = by, xy = b.

Since aw # ayy, this set has 2 connected components. It is now easy to check that the
solution set of the entire system has 2 connected components.

Hence, the image of X under the projection of £1(F") onto ¢, ({U, V, W}) is disconnected,
which is impossible since X is connected and the projection is a continuous map, thus aw =

/ u _ Vv
ayy and pyw = pw- O

This completes the verification of Definition .

The remaining part of Deﬁnition (“Consistency and realisation”) follows from how
we chose the various points/maps p together with Definition

It remains to verify the “Bounded geodesic image” property, Definition @ Let VEW
and x,y € X. If xyv # yv, then by Definition we have that xw and yw are separated
by aw = p},’v, as required. (Figure |14|illustrates this.)

Therefore, the cubical semialgebraic set is a real cubing in the sense of Definition O

Having shown that cubical semialgebraic sets with all I(U) closed are real cubings, we
proceed to the converse. For this we need the following lemma about embedding real trees
in products of copies of R so that the image is a real cubingE

Lemma 7.12. Let T be any real tree, then T can be given a structure of a real cubing (X, ")
whose index set § has the following properties:

o for all W € §, the real tree TW is a closed segment, line, or ray, and TW is a
single point if and only if T is;
o for all U,V eF we have UAV.
Moreover, either all of the segments involved are nontrivial, or T is a point, and § consists
of a single element.

Proof. Let T be a real tree. If T is a single point, just take § to be a singleton whose
associate real tree is a point, and we are done. So assume that 7" is nontrivial.

We define inductively a family of subtrees T of T such that | J7; = T and index sets 3;

1€l
that satisfy the properties of the statement and such that (73, Sl) is a real cubing. We define
3" = U3 and by transfinite induction we show that (T, §") is a real cubing with the desired
propelretlies.

For the base of induction, let b € T' be any point which we fix and refer to as the basepoint.
We choose any point y € T' distinct from the basepoint and consider the subtree T} = [b, y]
corresponding to the convex hull of b and y in 7. We define the index set Sl to have a
unique element Uy with associated tree the segment [b,y]. Clearly, (71, ;) is a real cubing
with the required properties.

Induction hypothesis. Let o be any ordinal and suppose that T}, is defined as the closed
convex hull of o points; in particular, Ty, is closed. Suppose that the index set §., is defined
and satisfies the properties of the statement and that (T, ,,) is a real cubing.

6The embedding part seems to be well-known, although we are not clear on the correct ref-
erence. Yves de Cornulier provides a proof here: https://mathoverflow.net/questions/226049/
embedding-of-real-trees-into-ell-1-gammal However, we need a bit more than an isometric embedding,
namely a characterisation of points in the image as consistent tuples.


https://mathoverflow.net/questions/226049/embedding-of-real-trees-into-ell-1-gamma
https://mathoverflow.net/questions/226049/embedding-of-real-trees-into-ell-1-gamma
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Induction step. We choose any point z € T' \. T, and define T, 11 to be the union of Ty,
and the segment [z, p], where p is the (unique) closest point projection of z onto T,,. Notice
that p is well-defined since by induction hypothesis T}, is closed. The corresponding index set
3’; 41 is the union of S; and the element U, 1 which is transverse to all the other elements
of the index set and the associated real tree is the segment [z, p]. The p maps are defined
naturally as pglﬂ = p and pg? = 7y, (p). It is easy to check that the tree (TQH,SZXH) is
a real cubing and satisfies all the conditions required.

Suppose now that « is a limit ordinal and that T3 and S.B are defined for all § < a. Let
1o, = Up<a T and define Ty, to be the closure of T;, in 7. We define 3., to be the union

U 3.5 We now show that (Ta,&;) is a real cubing. From the definition and the induction
B<a

hypothesis, it suffices to prove consistency for points x in the closure of T, and realization.
Let x € T,\T/, and let (x,) € T/, be a sequence of points that converges to x in 7' (note that
in particular {x,} is Cauchy).

For all U; € §., we define the projection 7y, (x) to be the limit of my,(x,). Notice
that since the sequence {x,} is Cauchy, so is the sequence {my,(x,)}, and since the tree
associated to U; is a closed segment, its limit belongs to U;. From the definition of 7y, and
the consistency conditions for all points in Ty (for all § < «), we deduce the consistency
condition at x. Indeed, let U;, U; € 5., be different elements of the index set. By definition
they are transverse. Then

. U;
mln{dUi (WUi (x)apUZ )7 de (TrUj (X), Pg )
U

Do = lim min{dy, (7u, (Xn), py’
n (2

)}
du, (Tu, (xa), pg' )} = 0
’ J J\NH PO :

Let us now see realization. Suppose that we have a set of consistent conditions C' on §,,:

. U; ;
min{dy, (t:, py? ), du, (5, pg’ )} = 0.

Let B < a and let Cg be the subset of conditions in C' that make sense in T}, that is the
corresponding elements of the index set U; and U; belong to Sﬁ Then, the conditions Cpg

are also consistent in %’6 and by induction there exists xg that realises them.
Since the conditions are consistent,

Z dy,(b,t;) < o0,
Ue3e,

and from the inclusion of index sets % c 5;3, for all 8 < B’ < o we have that

> du,(b,xg) < D) du,(bxg) < )] du,(b,t) < 0.
U,e§y, Uies}, U,e3,

Choose a sequence of ordinals {f;}ieny so that u;8; = a. Then, {xg} is a convergent
sequence of points in T),. As Ty, is closed, so the limit x of this sequence belongs to T, and
realises the consistency conditions.

Therefore (T, &a) is a real cubing with the required properties. The statement now follows
by transfinite induction. O

Remark 7.13. Let T be the universal real tree described in [DP01]. Using an argument
similar to the one of Lemma [7.12] but taking convex hulls of points in the boundary of T
instead of points in the tree, one can show that T admits a real cubing structure with the
index set having rays as associated trees.
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Since any tree S isometrically embeds into T, we conclude that S has an induced real
cubing structure with associated trees consisting of rays and nontrivial segments, or, if S is
trivial, a single trivial segment. O

Proposition 7.14. Let X be a real cubing in the sense of Definition[4.2. Then X is median-
preservingly isometric to a real cubing in the sense of Definition[7.5.

Proof. Let (X,J,) be a real cubing in the sense of Definition We prove the statement
in two steps. First, we show that X admits a real cubing structure (X,§") in the sense of
Definition [4.2| where all trees associated to the index set are closed segments. Then we show
that (X,§ ) is a real cubing in the sense of of Definition

Index set. Let (X,§") be obtained from (X,§;) by applying Lemma @ to every real
tree in U € 3(').

More specifically, to each Z € 36, we have associated a family UZ-Z. If TZ was a non-trivial
real tree, then the real trees ’TUZZ are nontrivial closed segments. If 7Z is trivial, then there
is a single UZ-Z, whose associated real tree is a single point. We define myz : Z — UZ to be
the closest point projection. '

Hence to every real tree associated to an element Z € SE) there corresponds a family of
(pairwise transverse) closed segments UZ%.

Relations and p points. We now define A, L and = on (X, §").

e Let YAZ in ;. By definition, we set UszhU]Z for each UY and UJZ. In this case,
Uz uY
we define pU? = TyY (p%) and pUZZ = Tyz (py) for all i, .
e Let Y1Z in 3’6. By definition, we set UZYJ_UJZ for all UlY and sz.
e Suppose next that Y £ Z in §, and we have p¥ € T*Z is a point and p% : T°Z —
T°Y.
Y
For any UJZ so that p%[ € UJZ and any UZY, we set UZY = UJZ. Define pgiz =
i

Z

U?
ﬂ'UJz(p}) = py and pU% = Tyy © p€|U%. Otherwise, i.e. if py ¢ UZ

i, we set

. uY uUZ
UZthU]Z. In this case we define pU;Z = Tyz (p¥) and pUZY = Tyy © p€|U]Z.

&' is real cubing index set. By definition, for all V,W,U € § we have that if V.C W
and W LU, then VLU (since the same is true in F).

By construction, the complexity of (X, "), is exactly the same as the complexity of (X, F)
(to any ©-chain in § there corresponds a =—chain in S[')) Similarly, to any subset of &
whose elements are pairwise orthogonal there corresponds a subset of pairwise orthogonal
elements of S(.).

We next show that consistent points for (X, §g) are also consistent points for (X,§").
Indeed, let x € X is a consistent point in (X,&'}). By definition if YMZ, then

Z

min {dz(wz(x), p%{), dy (my (x), p%)} = 0. Since TyY (x) = TyY (my(x)) and pU]Y =
Ty o Ty (p%) and the same equalities hold for Z and UJZ, we have that
: Uy u%
min dU]Z (7TU]z (x), pU]Z ), dUzY (TI‘UZY (x), pU}’) =0.

If Y & Z, then we have min {dz(7z(x), p¥ ), dv (7y(x), p% (7z(x)))} = 0.
If p%{ ¢ U]Z and hence UZY th]Z, the proof is the same as above.

Y
Finally, assume that UY & U]Z and hence pgzz = myz (pY) = px.
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Suppose that 7z(x) = py . Since py € UJZ, then mz(x) = myz(x) and so Tyz(x) = py =
J J
Y

pgg and the last equality is by definition.
J
Suppose now that 7z(x) # pg. Then my(x) = p%(7z(x)). It follows that the same

equality holds after applying myy. Therefore, from the definition, we have that myy(x) =
Uz .
Py (Tyz(x)). This concludes the proof that consistent points in (X, §) are consistent in
2 J

(X,5).

We are left to show that consistent points in (X, § ) are also consistency in (X, §g). Let
X be a consistent point in (X,S) Let Y,Z € SE) be so that YhZ. We show that either
v (%) = p% or mz(x) = pY.

Suppose towards contradiction that 7y (x) # p% and 7z(x) # py, then there exist i and
j so that myy (my (x)) # TyY (p%) and Tuz (rz(x)) # Tuz (pY). Since Y and Z are trees,

UY and UJZ are segments, and from Lemma [7.12, it follows that myy (1y(x)) = myy (%) and

V/ Uj Y Uy Uy
Ty (rz(x)) = Ty (x), and TuY (r¥) = Py and Tz (pz) = Pz - Hence, Tuz (x) # pyz
2 J J
Uz .
and Ty (X) # pyyy - Since Uy rhU]Z, we obtain a contradiction with consistency of § . This

proves that (X, §") is a real cubing in the sense of Definition .

We would like to show that the real cubing is also a real cubing in the sense of Definition [7.5]

In order to do that, one would like to interpret the relations in a natural way: nesting
is just domination, transversality corresponds to quadratic relation and independence to
orthogonality.

However, by definition of domination, if V dominates U we must have b # ¢, see Definition
7.1l (This is due to the fact that in a cubical semialgebraic set, we need to have that if V
dominates U, then U does not dominate V in order to proof that domination is a partial
order.) The latter translates to the following statement about the real cubing (X, §"): if
U V, then p¥ is not a single point. A priori, this does not have to hold in real cubings
(X.5;) and (X, ). , ,

To solve this issue, we modify the index set § as follows: for any U,V € § , so that
U V and pg is just a point we declare UAV. It is immediate to check that § is a real
cubing index set and that (X,3") is a real cubing. Abusing the notation, we denote the
obtained index set by § . Using this index set, we now can interpret nesting as domination
(independence, as orthogonality and transversality, by quadratic relation).

We are now ready to show that with this index set, the real cubing is also a real cubing
in the sense of Definition [7.5

We note that (X, g’ ) has finite depth and finite dimension, in fact it has the same depth
and dimension as (X, F)-

Semialgebraic projections. We show that if U, V € §, then Py v(X) is a semialgebraic
set defined by a (U, V)-cubical system. Let now U,V € § be distinct. Suppose first that
ULV. We show that ny x v : X — T°U x T°*V is surjective. Since ULV, then the
nonempty products hypothesis and Proposition [4.37 provide a convex subspace Fy x Fy.
Since my, myv are surjective, and the gate map to the product region does not change U, V-
coordinates of any point, and 7y is constant on each parallel copy of Fy and vice versa, we
get that my x my is surjective, as required. We note that this argument is general and does
not require that 7°U and 7°*V be subspaces of R.

Suppose next that UhV. In this case, we have that my(Fv) = py; and mv(Fy) = py.
It follows that the preimage of (my(Fv)) in 7°U x T*V is a copy of Fy and similarly
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the preimage of 7y (Fy) in 7°U x T*V is a parallel copy of Fy. Both of them are closed
connected subspaces of R and the statement follows in this case.

Finally, assume that U = V. Arguing as above, since my(Fy) = pg is a point it follows
that the preimage of my(Fy) in 7°U x T*V is a parallel copy of Fy, a closed connected
subset of R. Since Fy is a closed connected subset of R, it follows that Fyv ~ pg has at most
2 connected components. Therefore, Py v(X) is a subset of the set pictured on Figure

FIGURE 17. Py v(X) is a subset of the set marked red.

Finally, by Definition , X isometrically embeds into ¢1(F ) and so Py v(X) also
isometrically embeds into ¢1({U, V}). It follows that Py v(X) corresponds to domination
(see Definition [7.1]).

We are left to observe that the equality X = [Ny.v Pﬁl\,(X(U,V)) holds, since we
established that X(U, V) = Py v(X) for all U, V. O

8. © MISCELLANEOUS REMARKS
We collect here some miscellaneous remarks about real cubings that may be of interest.

Remark 8.1 (Tree-graded structures). The class of real cubings is closed under taking
finitely many direct products and tree-graded structures. More precisely, if Xy,..., X} are
real cubings, then so is X1 x -+ x X}. The real trees for X; are declared to be orthogonal
to those for X; whenever i # j.

Let X be a tree-graded space, in the sense of [DS05|. Suppose the pieces in the tree-graded
structure are R—cubings with globally bounded rank N and a global bound D on the length
of E—chains. Then X is isometric to an R—cubing of rank N, with E—chains of length at
most D + 1. Indeed, let § be the union of the index sets {S;} corresponding to the pieces
and a maximal element S. Declare the following relations:

e for each U; € S;, we have U E S;
e if U;, U € S;-, then the relation between them is the same as in S;;
e for all 7 # j, for all U; € S; and for all U; e S;-, U;hUj;

To the maximal element we associate the transverse tree obtained by collapsing all the
pieces. The p maps are defined naturally by the composition of the closest point projection
of the pieces in the space and the p maps in the pieces. One can check that with this data,
X is a real cubing.

Alternatively, suppose that the pieces are real cubings where the index set has clean
containers. From Corollary we have that the pieces are real cubings with orthogonal
poset-colouring of finite depth. Assume further that the pieces have a global bound D on
the depth of the orthogonal poset-colouring and a global bound N on the rank.
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A tree-graded space with geodesic median spaces as pieces is again median. We leave this
part as an exercise; it can also be assembled from results in [Dru09] and [DS08, Section 2.2|,
in particular Lemma 2.7 of the latter paper.

The set of walls of the tree-graded space X is the union of the walls in the pieces together
with walls arising from the transverse tree associated to X. The orthogonal poset-colouring
associated to the median space X is the union of the orthogonal poset-colourings of the
pieces and a maximal element S the maximal elements of the index sets of the piece have
been identified with S. Therefore, X is a median space of rank N and with orthogonal poset-
colouring of depth D + 1 and so by Corollary it is a real cubing with clean containers.

The motivating example of an R—cubing is an asymptotic cone of a hierarchically hyperbolic
space (Theorem , and a motivating example of a tree-graded space (with additional
properties of the pieces) is an asymptotic cone of a relatively hyperbolic group [DS05, DS08|.
In this situation, since hierarchical hyperbolicity of parabolic subgroups implies hierarchical
hyperbolicity of the whole group [BHS19, Theorem 9.1|, it is true that tree-graded spaces
arising as asymptotic cones of hierarchically hyperbolic groups are R—cubings. O

Remark 8.2 (Relative real cubings). Just as there is a notion of a relatively hierarchically
hyperbolic space [BHS1T7al, one can imagine a notion of a relative R—cubing. We imagine that
the definition would be the same as Definition except that for W € § a =-minimal
element, we would require only that 7*W is a geodesic space, not necessarily an R—tree.
(There might be some in-between notion, where we ask that such 7*W is a geodesic median
space of rank possibly larger than 1.) We wonder if such a notion would be useful for
studying asymptotic cones of, say, graph products, since graph products admit relative HHS
structures [BR20b| (we are grateful to Anthony Genevois for a question related to this). [

Remark 8.3 (Injective metrics). Let (X, &) be an R-cubing. Replace the ¢; metric by the
l+ metric. Presumably, as in the more general theorem of Bowditch about finite rank median
spaces from [Bow20], this changes X within its bilipschitz equivalence class to become an
injective space. Is this useful for anything? For example, is it useful to know that asymptotic
cones of hierarchically hyperbolic groups are bilipschitz equivalent to injective spaces arising
by restricting the ¢, metric on a product of real trees? (Note that Haettel-Hoda-Petyt have
already shown that any hierarchically hyperbolic group is quasi-isometric to an injective
space [HHP20], but it does not seem clear that asymptotic cones of injective spaces should
be injective.) O

Remark 8.4 (Approximating median spaces by real cubings). We have proven in Proposition
[3.25 that any median metric space admits an orthogonal poset-colouring. Furthermore, if
this poset-colouring has finite depth, then the space can be given a real cubing structure.
Informally speaking, this hints that truncating the depth in a metric median space, one
would get a real cubing and this process could give a way to approximate median metric
spaces of finite rank by real cubings. Can any complete median metric space of finite rank
be approximated by real cubings (as direct or inverse limit of real cubings)? ]

Remark 8.5 (Eliminating isoorthogonality more generally). It is possible that there is a
version of Propositionnot using clean containers. Specifically, let (X, g ) be a real cubing.
Can we replace § by a new real cubing structure SI in which no two distinct elements are
isoorthogonal?

The idea is the following. If {U;}; is a set of isoorthogonal (and hence pairwise non-
orthogonal elements), then using consistency one can show that the image 7°*{U;} of X
in [[, 7°U; is a real tree, and moreover if W is such that pg is defined for each Uj;, the

point (pg)Z in the product lies in 7°{U;}. (Similar statements hold for nesting.) This
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seems to us to be quite elegant, and suggests the idea that one should form SI as the set of
isoorthogonality classes, using the various 7°*{U;} as the associated real trees.

What is less elegant is what one has to do to arrange for the required combinatorial
properties of the index set from Definition to hold for 8’1 Specifically, defining the new
nesting relation so that it is transitive seems to require a bit of a hack. We did not need
this construction above, because in our situation clean containers allowed us to, essentially,
replace each isoorthogonality class with an element of § , and simply restrict the relations.
Without clean containers, it is more complicated, but we think this possibility is worth
pointing out. O

Remark 8.6 (More flexible sets of walls). In this part we have considered the set of all
walls W in a median space. Any measurable subset W < W of walls in a metric median
space defines a pseudo-metric on it. We say that a subset of walls is complete if it defines the
original metric of the space, that is for all x,y € X, fio(H(x,y)\(H(x,y) "H')) = 0 where H’
is the set of halfspaces associated to walls in WW'. In this part we could have consider complete
set of walls instead of the set of all walls (and adjust correspondingly the definitions).

In particular, the domain of poset-colouring map is Y. In order to obtain extra properties
on a real cubing, for instance wedges and clean containers, we modify the poset-colouring
and remove the redundant colours, see the proof of Corollary

One could have proceeded in a different way as follows. We could define poset-colouring
on complete subsets of walls. This would allow us to remove set of walls of measure 0 and
obtain poset-colouring with the extra properties, for instance, without redundant colours. In
other words, there are two equivalent approaches to obtain better structures on a real cubing
- one can either modify the domain of the poset-colouring (from the set of walls to a complete
set of walls) or the co-domain (the set of colours). O

9. SUMMARY

Thus far we have defined what it means for a space (X, dx) to be an R—cubing, described
the structure of an R—cubing as a complete, finite-rank median metric space, and discussed
convexity. We have also discussed automorphisms of R—cubings, the local structure of an
R—cubing (via the notion of a grove), and how these two notions interact.

We have also characterised real cubings as semialgebraic sets, and related real cubings
with some additional properties for their index sets — wedges and clean containers — to
properties of walls (the orthogonal poset-colouring).

We have seen some examples of R—cubings from "nature", like finite products of R-trees,
and finite-dimensional CAT(0) cube complexes, and we have promised that more examples
are provided by asymptotic cones of hierarchically hyperbolic spaces and groups.

Part 2. Hierarchically hyperbolic spaces and groups

In this part, we discuss hierarchically hyperbolic spaces and groups (respectively abbrevi-
ated as HHS and HHG). We aim to keep things somewhat self-contained, stating many of the
results from the literature that we shall use later, and including some proofs (in particular, we
give a more detailed account of standard product regions than appeared in [BHS17b, [BHS19],
and correct two misstatements from [BHS19, Section 5]).

At the end of this part, we revisit the construction of hierarchically hyperbolic structures
on cube complexes from [BHS17b| in light of the orthogonal colouring, and in the following
section, speculate on some related questions; Sections and Section are therefore not
necessary for our applications to asymptotic cones.



R-CUBINGS AND HHG 104

A gentle but detailed explanation of hierarchically hyperbolic spaces, clearly explaining the
geometric intuition behind each part of the definition, was recently written by Sisto [Sis19].
The presentation here is somewhat more technical, and aimed at our specific applications.

10. THE DEFINITION OF AN HHS

We now recall from Definition 1.1 of [BHS19] the notion of a hierarchically hyperbolic space
and the associated hierarchically hyperbolic structure.
In the remainder of the paper, given a metric space M, a subspace A, and r > 0, we let

N;(A) denote the (closed) r—neighbourhood of A in M.

Definition 10.1 (Hierarchically hyperbolic space). The (g, ¢)—quasigeodesic space (X, dx)
is a hierarchically hyperbolic space (abbreviated as HHS) if there exist

e an index set
e a constant 6 > 0, and
e a set {E’W : W e §} of é~hyperbolic geodesic metric spaces,

such that the following conditions are satisfied:

(1) (Projections.) There exist K,¢ > 0 and, for each W € §, a projection my : X —
2CW such that

e for each x € X, the set 7y (x) is nonempty and of diameter at most &;

o my is (K, K)—coarsely lipschitzE;

e the image of my is K—quasiconvex in CWE

(2) (Nesting.) § is equipped with a partial order |=| with the following properties:

o if §F # (J, then § has a unique =—maximal element, denoted S;

o W W for all W e § (i.e. our partial order is reflexive).

When V £ W, we say that V is nested in W, and when V & W, we say that this
nesting is proper.

For each W € §, we denote by §w the set of V € § such that V =2 W. Forall W € §
and all V e § — {W}, there is a nonempty subset IBTIL < CW with diamew (ply) < &.
There is also a projection pl¥ : CW — 2¢V — {}.

(3) (Orthogonality.) § has a relation |1} called orthogonality, satisfying:

e | is symmetric;

e | is anti-reflexive;

e VT W and WLU imply VLU for all U, V,W € §;

o if VIW, then V,W are not =—comparable.

Furthermore, the following holds for all 7" € §. Suppose that U € §r and {V €
Sr:V LU} # &. Then there exists W € §r — {T'} with the property that VLU and
V E T together imply V £ W.

This V is called a container for the orthogonal complement of U in T. It need
not be unique, or orthogonal to U, although in practice the latter often holds and
simplifies various things.

(4) (Transversality and consistency.) If V,W € § are not orthogonal and neither is
nested in the other, then we say V, W are transverse, denoted V[hW.

There exists kg = 0 such that if VAW, then there are nonempty sets cCW
and p‘vy € CV each of diameter at most £ and satisfying:

min {dw (7w (z), pyy), dv (mv (2), o1V ) } < Ko

"Where it will not cause confusion, we will sometimes treat coarse maps like maps, e.g. this condition
means that for all z,y € X, and all U € §, we have dey (mv(z), 7v(y)) < Kdx(z,y) + K.
8This means the set Uzer mu () is K—quasiconvex in the hyperbolic space CU.
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for all x € X.
For V, W € § satisfying V' & W and for all x € X, we have:

min {dw (7w (z), pyy), diamey (v (z) U pV (7w (2)))} < Ko.

The preceding two inequalities are the consistency inequalities for points in X.
Similarly, if U = V, then dW(p(VJV,p‘V/V) < kg whenever W € § satisfies either
VeWor VAW and W xU.

(5) (Finite complexity.) There exists[y] > 0, the complezity of (X, ), so that any set
of pairwise E-comparable elements has cardinality at most .

(6) (Large links.) There exist A > 1 and E > max{¢, o} such that the following holds.
Let W e § and let z,2’ € X. Let N = M, (mw (), 7w (2')) + A.

Then there exists {T@}y:\q < Fw — {W} such that for all T € Fy — {W}, either
T € §r, for some i, or dp(mp(z), 7r(2’)) < E. Also, dw(ww(w),paﬁ) < N for each i.
(7) (Bounded geodesic image.) There exists B > 0 such that the following holds.
For all W e §, all V e Fw — {W}, and all geodesics v of CW, either
diamey (pyY (7)) < B or v n Np(py) # &.

(8) (Partial Realization.) There exists a constant a with the following property. Let
{V;} be a family of pairwise orthogonal elements of §, and let p; € 7y, (X) = CV.
Then there exists x € X so that:

o dy,(z,pj) < a for all j,

e for each j and each V € § with V; £V, we have dv(IL‘,p“;j) < «, and

o for each j and each W with WAV}, we have dy (z, p%) < a.
(9) (Uniqueness.) For each k > 0, there exists 6, = 6,(x) such that if z,y € A and
d(z,y) = 0,, then there exists V € § such that dy (z,y) > k.

We refer to §, together with the nesting and orthogonality relations, the projections, and the
hierarchy paths, as a hierarchically hyperbolic structure for X. Given A < X and U € § we
let 1y (A) denote Ugeany(a). O

Notation 10.2. Where it will not cause confusion, we will often suppress the symbols 7w and
C in the following way: we write, e.g., dy(z,y) to mean dey(my(z), 7y (y)) for U € § and
x,y e X. g

Remark 10.3. One can replace each CU with a suitable geodesic thickening of 7 (X) to
make each 7y coarsely surjective. Hence we can and shall assume that 7y is uniformly
coarsely surjective for each U € §.

An HHS where the projections are uniformly coarsely surjective is normalised, and this
procedure is discussed in [BHS19| Section 1] and [DHS17, Section 1].

The reason that coarse surjectivity is not imposed in the definition is that the more flexible
definition is useful for verifying that certain subsets of HHSes are again HHSes.

So, when introducing an HHS, we will assume that it is normalised. If we encounter an
HHS (arising as a subspace) that is not normalised, we will warn the reader. O

Remark 10.4 (Summary of constants). As in [BHS19, Remark 1.5, we choose our constant
E < o to exceed each of the constants 0, K, &, kg, B, a. So, the reader can usually forget
those constants and just use E.

The constant F, the complexity x, the large link constant A, and the function k — 6,(k)
from the uniqueness axiom will often be referred to as the HHS constants. For example,
when we say that some other constant depends on the HHS constants (or depends on the
HHS structure), we are saying that it depends on the space X and the particular choice of
HHS structure, but not on any other feature of the situation at hand. O
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10.1. Realisation and the distance formula. The two main technical theorems about
hierarchically hyperbolic spaces are the realisation theorem and the distance formula, stated
immediately below. If they wish, the reader can take these to be part of the definition of a
hierarchically hyperbolic space.

Theorem 10.5 (Realisation (with linear bound)). Let (X,§) be a hierarchically hyperbolic
space with each my an E-coarsely surjective coarse map. Then there exists ro, depending
only on the constant E, such that the following holds. Let k > 1 and let (by)vez € [ [z CV
be k—consistent, i.e.

o if U,V €F satisfy UAV, then min{dU(,og7 bU),dV(pg, by} < k;
e if U=V, then min{dy (p{, by ), diam(by U p}; (by))} < k.

Then there exists © € X such that, for all V € §, we have dy (z,by) < rok.

Proof. This is almost the content of Theorem 3.1 and Remark 3.2 of [BHS19]. The only dif-
ference is that the statement of [BHS19, Theorem 3.1] does not make the bound on dy (x, by ),
in terms of k, explicit. However, inspecting the proof of that theorem shows that we can
take 19 = 101XE? where x (the complexity) bounds the cardinalities of pairwise orthogonal
subsets of § by Lemma 2.1 of [BHS19] and E is the constant from Remark [10.3 O

Remark 10.6 (Admissibility). In the realisation theorem, we are assuming uniform coarse
surjectivity of the my maps, as mentioned earlier. If we didn’t assume this, then the same
conclusion would hold, except one would have to add the hypothesis that dy (by, 7 (X)) < &
for all U € §. This blanket coarse surjectivity assumption is why we have omitted the notion
of an admissible tuple used in [BHS19). O

The realisation theorem says roughly that the consistency inequalities coarsely charac-
terise X' as a subspace of vaeg CV. The next theorem, the distance formula, says that the
projections completely control the coarse geometry of X.

Theorem 10.7 (Distance formula and existence of hierarchy paths for HHS). Let (X,§) be
a hierarchically hyperbolic space. Then there exists a constant sg such that for all s = sg
there exists K such that for all x,y € X, we have

Kﬁldx(m,y)—Ké Z dy(z,y) < Kdy(z,y) + K.
{UeF:dy (z,y)=s}

Moreover, there exists a constant D = D(X,§) such that the following holds: for all
x,y € X, there is a (D, D)-quasigeodesic vy : [0,L] — X, with v(0) = z,v(L) = y, such
that, for all U € §, the composition 7y o~y is an unparameterised (D, D)—quasigeodesic in the
E-hyperbolic space CU, lying D—close to any CU—-geodesic joining its endpoints.

A path as in the statement is a (D, D)-hierarchy path.

Theorem @ follows from Theorem 4.4 and Theorem 4.5 in [BHS19]. An alterna-
tive proof of the above theorem, in a slightly more general setting, was recently given by
Bowditch [Bow18al.

Remark 10.8 (Distances and realisation in the main examples). In this paper, we are
mainly interested in the case where X is either a Cayley graph of a mapping class group of an
orientable surface of finite type, or the Cayley graph of a group that is compact special in the
sense of [HWO0S]. In the former case, the realisation theorem was also proved in [BKMMI12]
and the distance formula in [MMOOQ]. In the latter case, realisation and the distance formula
were established in [BHSI17D]. O



R-CUBINGS AND HHG 107

10.2. © Differences between hierarchically hyperbolic spaces and real cubings.
Definition [10.1 and Definition [4.2] are morally very similar — one might say that the defini-
tions are roughly the same, except in a real cubing, hyperbolic spaces are replaced by real
trees, various bounded sets are replaced by points, coarse maps are replaced by maps, etc.
However, there are a few more important differences that we now highlight:

e In a real cubing, we do not require § to have a unique =-maximal element, as we
do for § in a hierarchically hyperbolic space;

e The part of Definition asking that every element orthogonal to a given U is
nested in a single, non-maximal element has no analogue for real cubings.

e There is no real cubing analogue of the large link axiom, and in particular in a real
cubing, the set of U € § such that my(x) # my(y) for a given x,y may be infinite
(although the ¢; condition means it must be countable); in an HHS, this is ruled
out by Lemma [I1.4, which relies on the large link axiom. Similarly, the "passing up
lemma", so important for HHSes, Lemma [11.1, has no real cubing analogue.

e The distance formula, Theorem [10.7, does not say that the projections 7y give a
quasi-isometric embedding X — HUE& CU, because of the thresholding in the sum in
the theorem. On the other hand, just by definition, in a real cubing the projections
give an isometric embedding X — [ [y 7°U.

e Real cubings have no analogue of the uniqueness axiom, Definition @@ For
hierarchically hyperbolic spaces, this axiom implies that if X is unbounded, then
there are associated hyperbolic spaces CU of arbitrarily large diameter. We have
seen an example of an (unbounded) real cubing where all of the associated real trees
are unit intervals, Example [4.25.

The real cubings considered later, that arise as asymptotic cones of hierarchically hyper-
bolic spaces, will retain some features of hierarchically hyperbolic spaces that do not hold
for general real cubings (e.g. § will have a unique =-maximal element), but some of the
differences will persist (e.g. there will certainly be many pairs of points whose projections to
infinitely many real trees differ).

10.3. Group actions on hierarchically hyperbolic spaces. We now discuss group ac-
tions on hierarchically hyperbolic spaces. The formulation is a bit more modern than
in [BHS17b]|, following [DHS20]. The present formulation of the definition of a hierarchi-
cally hyperbolic group was introduced explicitly, to our knowledge, in [PS20].

Definition 10.9 (HHS automorphisms, hierarchically hyperbolic group). Let (X,F) be an
HHS. Let G be a group acting on X, and suppose that all of the following hold:

e the action of G on X is by uniform quasi-isometries (i.e. the quasi-isometry constants
can be taken independently of the group element);

e (G acts on §, preserving the relations &, 1, rh;

e for each g,h € G and each U € §, we have isometries g : CU — CgU and h : CU —
ChU, such that gh : CU — CghU is the composition of the isometries g and h;

o forallze X,ge G,U € §, we have mgy(gz) = g(my(x));

e for all g€ G and all U,V € § with either U = V or UMV, we have

U
9(pV) = Py
Then each element of g is an HHS automorphism of (X,F).

If, in addition, the action of G on § is cofinite, and the action of G on X is (metrically)
proper and cobounded, then (G, §) is a hierarchically hyperbolic group, abbreviated HHG. [

Remark 10.10. Suppose that (X, §F) is an HHS on which G acts (metrically) properly and
coboundedly by HHS automorphisms, acting cofinitely on §.
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Fix a basepoint xg € X. Let ¥ : G — X be the orbit map 1 (g) = gxg. For each U € §,
define 7, : G — CU by ny;(g9) = mu(¢(g)). Note that

gy (h) = gy (hao) = meu(ghao) = mgy(gh).

So, to check that the left-multiplication action of G on (G,§) is an action by HHS au-
tomorphisms, we just need to check that G is finitely generated and (G,§), with the above
projections, is an HHS. By the definition of nj;, the HHS axioms will hold (after uniform
enlargement of constants) once we show that G is finitely-generated and quasi-isometric to
X. (Indeed, by [BHS19, Proposition 1.10|, if G is quasi-isometric to X', then composing
projections 7y : X — CU with the quasi-isometry makes (G,§) an HHS.)

Now, since X is a quasigeodesic space, it is quasi-isometric to a geodesic metric
space [CdIH16, Lemma 3.B.6]. So, G quasi-acts on X’ by uniform quasi-isometries. Ap-
plying Lemma 1.4 of [FLS15], we see that G is finitely generated and 1) is a quasi-isometry.
Hence (G,§) is an HHS where G acts properly and coboundedly by automorphisms, and
cofinitely on §. O

Accordingly, we will always use the following simpler definition of an HHG:

Definition 10.11 (Hierarchically hyperbolic group). A finitely generated group G is a hierar-
chically hyperbolic group (HHG) if, fixing a word-metric on G associated to a finite generating
set, we have an HHS (G, §) on which G acts by HHS automorphisms in such a way that the
action of GG on (G is left-multiplication, and the action of G on § is cofinite. O

Remark 10.12. In the preceding definition, we could just as well have used the Cayley
graph of G as our HHS. Typically, one does not bother with this because in the HHS setting,
one works coarsely, so there’s nothing gained by having the space be geodesic; quasigeodesic
is enough. Moreover, even if one did use a geodesic space like the full Cayley graph, one must
take care since geodesics may not interact well with the rest of the HHS structure (they may
not be hierarchy paths). The mantra is that the geodesics in an HHS are a mystery, but we
have special quasigeodesics — the hierarchy paths — instead. ]

In particular, asking that G be an HHG is strictly stronger than simply requiring every
Cayley graph of G to be an HHS: in fact, every Cayley graph of the (3,3, 3) triangle group
is an HHS, but this group admits no HHG structure [PS20)].

Although many of the results of this paper are for general HHGs (or with mild combina-
torial hypotheses on the index set) the uniqueness of the asymptotic cone will be established
for a more restrictive class of groups, algebraic HHG, which are introduced in Section
Thus far, hierarchical hyperbolicity is just an abstract geometric property of a group; later,
we will ask that the HHG structure arise in a particular way from algebraic features of G.

11. COUNTING, ORDERING, AND COLOURING IN THE INDEX SET

When working with an HHS (X,§), one frequently uses directly the consistency and
bounded geodesic image axioms. It is less typical to use the large link axiom as stated;

one more frequently uses it in conjunction with finiteness of complexity, in the following
form, which is Lemma 2.5 in [BHS19]:

Lemma 11.1 (Passing up large projections). Let (X,§) be an HHS. For all C = 0 there
exists N € N such that the following holds. Let x,y € X and V € §. Let {U;}! | < § be a
subset of the index set with the following properties:

en>=N;

o U, TV foralli;

e dy,(z,y) = E for alli.



R-CUBINGS AND HHG 109

Then there exists U € Fy such that U; = U for some i, and dy(x,y) > C.

The preceding lemma plays an important role in several places in the literature on HHSes,
and in the present paper.

We also record that, while the finite complexity axiom is about nesting, it combines with
the orthogonality axiom to yield the following, which is Lemma 2.1 in [BHS19]:

Lemma 11.2 (Finite dimension). Let (X,§) be an HHS. Let O < § be a subset of the index
set whose elements are pairwise orthogonal. Then |O] < x.

Given z,y € X, it is often useful to consider the set of CU on which x, y project "far apart",
and get some combinatorial control on that set; Lemma [11.1 does that using the large link
axiom and finite complexity. Here’s an analogous statement using finite complexity and
consistency, which also appears in [DMS20, Section 2|:

Lemma 11.3 (Covering). Let (X,§) be an HHS. Then there exists N € N, depending only
on the HHS constants, such that the following holds. Let x,y € X. Let C = 100E, and

consider the set |Relc(z,y)| of V € § such that dy(z,y) = C. Then for all U € Relo(x,y),
there are at most N elements V € Relc(x,y) such that U = V.

Proof. Fix U as in the statement and let V| be the set of V' € Relg(x,y) such that U & V.
We want to bound |V| uniformly. First, observe that any =—chain in V has length at most
X- In other words, if V' is a set of pairwise =—related distinct elements of V, then |V'| < x.
Any set of pairwise orthogonal elements has cardinality at most x by Lemma [11.2

Now suppose that V1, Vs, V3 € V and suppose that V;hV; for all i # j with 4,5 € {1,2,3}.
Since C' > FE, the consistency axiom implies that, up to relabelling, we have dy;, (p“g, x) < FE

and dy, (p“g) < E. Hence dy, (p“g, p“g) > C —4FE > E, which contradicts Definition @
since U © V1,U © V5, U = V3. Hence subsets of V whose elements are pairwise transverse
have cardinality at most 2.

By Ramsey’s theorem [Ram29|, with N = Ram(x + 1, x + 1,3) — 1 (where Ram denotes
the Ramsey number), we have |V| < N, since any two elements of V are either E-related,
orthogonal, or transverse. O

We also have the following lemma. It follows from the distance formula, but one does not
need the distance formula to prove it (and in fact it plays a role in the proof of the distance
formula). So, we include a proof for illustrative purposes:

Lemma 11.4. Let C = E. Then for all z,y € X, the set Relo(z,y) is finite.

Proof. Given U € §, let RV be the set of V € Relc(z,y) with V & U.
Letting S be the unique E—maximal element of §, we have by the large link axiom that
there exist T1,...,T; & S such

k
Relo(x,y) < {S}u | R
=1

By induction on the maximum length of a =—chain terminating at 7; (which is strictly less
than the corresponding number for S, namely y), each R’ is finite, and we are done. (In
the base case, T; is =-minimal, and |R%| < 1.) O

We record two more important combinatorial facts about the set Relc(z,y) for C suffi-
ciently large. The first is used later in the paper, where it is instrumental in the construction
of the diagonal decomposition of a sequence of elements. The second, related, fact is not used
directly, but we include it because it is instrumental in the original proof of the distance for-
mula (Theorem , and it is helpful for understanding the cubical approximation theorem,
discussed below.
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Definition 11.5 (Level). The level of U € § is the length of a longest E—chain having U as
the maximal element, and is denoted |[Level(U). Note that Level(U) < x for all U. O

Lemma 11.6 (Partial order on relevant elements). For all C = 100E, the following holds.
Let x,y € X and let Relo(z,y) be the set of V € § with dy(z,y) = C. Let V < Rele(z,y).
Define a relation onVbyU <V ifV=U, or VAU and dy(z,pl}) < E. Then <
is a partial order on V. Moreover, U,V € Relo(z,y) are either orthogonal, =-related, or
<-comparable.

Proof. This is Proposition 2.8 in [BHS19]|, and is illustrated in Figure O

U

Vi Vs Vs

FIGURE 18. A <—example. Here, Relc($,y) = {U1,U2,U3,‘/1,V2,V3,W1}.
We have that W1 LU, Us and Vq, Vo £ Uy and V3 © Us. Hence W7 LV; for all
1. The other pairs are transverse, and some p? points are shown. We have,
for example, U7 < Uy < Us, and Uy < W1, and Vi < Vo < Us. While V5 < Us
and V5 < V3, the elements Us, V3 are not transverse and hence <—incomparable.

We could have equivalently defined |<| by asking dy(y, ,05) < E, because of consistency.
The partial order intuitively means that, when moving along any hierarchy path from x to
y, one must first change the U coordinate before one can change the V' coordinate.

For each ¢ < x, and any C' > 100E, we can consider the set of V' € Relg(z,y) with
Level(V) = £, denoted Rel%(z, ).

The following lemma is proved in [BHS19] Section 2|, but we reproduce the proof here,
because it is a nice quick application of Dilworth’s theorem.

Lemma 11.7 (Colouring of relevant elements). Let C' = 100E, let £ < x, and let x,y € X.
Then there exists n < x and disjoint subsets V1,...,V, of Relec(x, y) such that
o L; Vi = Relg(2,y);
e the elements of V; are pairwise transverse, and in particular form a <—chain, for each
1< n.

Hence Relg(x,y) can be partitioned into at most x> <-chains.

Proof. The "hence" part is immediate from the first part of the lemma. So, it suffices to do
the colouring for a fixed ¢ < x.
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But Relé (z,y) is partially ordered by < in such a way that transverse elements are com-
parable, and incomparable elements are orthogonal. Hence, by Lemma [11.2, antichains have
cardinality bounded by Y, so the claim follows from Dilworth’s theorem [Dil50]. O

The partial order and the colouring will play a role later in this section, in our discussion
of the cubical approximation theorem, which essentially transforms the partial order < on
the set of relevant projections for a pair of points into the usual partial order on halfspaces
in an appropriately chosen finite CAT(0) cube complex.

12. COARSE MEDIAN OPERATOR ON AN HHS

Let (X,§) be a hierarchically hyperbolic space. Here we recall the coarse median struc-
ture on X. Coarse median spaces are a common generalisation of hyperbolic spaces and
CAT(0) cube complexes introduced by Bowditch in [Bowl3| and play a fundamental role in
hierarchically hyperbolic spaces.

We do not need the general definition of a coarse median space here, just the definition of
the coarse median in the HHS context. This closesly parallels the construction of the median
operator on an R—cubing.

Definition 12.1 (Coarse median coordinates). Let x,y,z € X and let W € §. Consider
any geodesic triangle in the E-hyperbolic space CW formed by geodesics between the points
mw(z), 7w (y), 7w (2). Let puw(x,y,z) € CW be any point lying E-close to each of the three
geodesics. O

Now consider the tuple (uw (z,y, 2))wez. Lemma 2.6 of [BHS19] shows that this tuple is
100E—consistent. So the realisation theorem, Theorem @, provides a point p = u(x,y,z) €
X such that dy (u, pw) < 100rgE for all W e §.

Define p : X3 — X by (x,9,2) — u(z,y,2). The choice of u(x,y,z) relied on two sets
of choices, namely the choice inherent in the various uyy, and the choice in output of the
realisation theorem. However, the choice of uyp is well-defined up to distance bounded in
terms of F, and hence, by the uniqueness axiom, u is well-defined up to uniformly bounded
error.

Moreover, if z,y,z € X and o is any permutation of {z,y, z}, then the points u(x,y, z)
and p(o(x),o0(y),o(z)) uniformly coarsely coincide (i.e. lie at distance bounded in terms of
the HHS structure only). So we will not make a big deal of the order of x,y, z in the coarse
median operation.

Theorem 7.3 in [BHS19| says that the coarse median operator p makes X into a coarse
median space.

If a group G acts on (X, §) freely by coarse median automorphisms, and  : X3 — X is the
coarse median operator defined above, we can always assume that p(gz, gy, gz) = gu(x,y, 2)
forall ge G,x,y,z€e X.

Indeed, fix x,y,z € X and let W € §. Then

dQW(MW(gJ;? a9y, gz)u@ﬂw(% Y, Z)) < 100E,

because, by Definition the isometry g : CW — CgW takes any geodesic triangle with
vertices my (x), mw (), Tw (2) to a geodesic triangle with vertices mgw (9), Tow (9y), Tow (92),
so computing the coarse median in CW and applying ¢ is uniformly coarsely the same as
computing the coarse median in CgW. Hence, by the uniqueness axiom, there exists C' =
C(F) such that dy(gu(z,vy, 2), u(gz, gy, 92)) < C.

We now choose one ordered triple (x,y, z) in each G—orbit, and let u(z,y, z) be as defined
above, and then define u(gx, gy, g2) = gu(z,y, z) for all g € G. Since this is only a bounded
perturbation of the original coarse median, it is still a coarse median operator.
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In particular, given an HHG (G, J), we will denote by |y : G® — G the coarse median
operator, which has the following two properties:

o gu(x,y, 2) = plgz, gy, gz) for all g, z,y, 2 € G;
e for all W € § and x,y, z,€ G, the point my (u(z,y, 2)) lies Co—close to any geodesic

joining 7y (a), 7w (b) whenever a,b € {x,y, z} are distinct; the constant Cy depends
only on F.

Beyond that, we will only use a few additional properties of coarse media from the litera-
ture, which we will mention as they are used.

Remark 12.2 (Equivariance and permutation-invariance simultaneously). At the expense
of uniformly increasing constants, we can perturb pu : X3 — X so that u(z,y,z) =
w(o(z),o(y),o(z)) and p(z,x,z) = x whenever o is a permutation of {x,y,z}. In prac-
tice, we do not ever need exact permutation-invariance of this type.

When (X, §) has a free action by a group G of HHS automorphisms, we are often interested
in p being exactly (not just coarsely) equivariant, as arranged above.

In general, one cannot arrange this simultaneously with the perturbation needed to make
p invariant under permutation of its three arguments. However, one can do this provided
the action of G on the set of unordered triples in X is free, i.e. if G doesn’t have subgroups
embedding in S3. The reader really wishing for a G—equivariant and permutation-invariant
coarse median is invited, in all later sections, to assume our HHGs are torsion-free and to
replace mapping class groups everywhere with a fixed torsion-free finite-index subgroup. [0

13. HIERARCHICAL QUASICONVEXITY AND HULLS

We now introduce the notion of (quasi)convexity appropriate to HHSes, following [BHS19]
Section 5]. The reader may notice that it is a "coarse-ification" of the notion of convexity in
an R-cubing. Fix an HHS (X, §).

Definition 13.1 (Hierarchical quasiconvexity). Let x : N u {0} — N u {0} be a function.
Let Y < X. Then Y is k—hierarchically quasiconvex if both of the following hold:

e for all U € §, the subset 7y7()) is £(0)—quasiconvex in CU;
e for all ¢ € N there exists s = k(t) € N such that the following holds for all z € X: if
dy(z,Y) <t forall U € §, then dy(z,)) < s.
Occasionally, when & is not important, we will say that ) is hierarchically quasiconvez if

the above two properties hold for some function x. O

Just as convexity in an R—cubing is closely related to median-convexity, a theorem of
Russell-Spriano-Tran relates hierarchical quasiconvexity to quasiconvexity in the coarse me-
dian sense. Recall that ;1 : X2 — X denotes the coarse median from Section

Definition 13.2 (Coarse median quasiconvexity). Let @@ > 0. A subset Y < X' is QQ—median
quasiconvez if for all y,y' € Y and x € X', we have dy(u(x,y,v'),)) < Q. O

From |RSTI8| Proposition 5.11|, we obtain:
Proposition 13.3. Let (X,§) be a hierarchically hyperbolic space and let Y < X. Then the

following are equivalent:

o there exists @ such that Y is Q-median converx;
e there exists k such that Y is k—hierarchically quasiconver.

Moreover, Q depends only on k and the HHS structure, and x depends only on Q and the
HHS structure.
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The preceding proposition is extremely useful, because, depending on the situation, either
the definition of hierarchical quasiconvexity using the HHS structure or the coarse median
characterisation may be much easier to work with than the other.

Given a notion of "convexity", one should have a notion of "convex hull". This is achieved
by the following, which is Definition 6.1 of [BHS19]:

Definition 13.4 (Hull). Let 6§ > 0. Given A c X, let Hy(A) be the set of all x € X such
that, for all W € §, the point 7y (x) lies f—close to a geodesic in CW joining two points in
mw (A). O

Lemma 6.3 of [BHS19| provides a constant 6y, depending only on the HHS constants, such
that for all § > 6, there is a function k¢ such that Hy(A) is ko—hierarchically quasiconvex
for any A. We will frequently refer to the constant 6y and the associated function k.

We direct the reader to [RST18| for alternate characterisations of the hull in terms of
hierarchy paths.

14. GATES

Recall that median convex subsets of a median space admit gate maps, which are 1-
lipschitz retractions, and indeed coincide with closest-point projection. Here we discuss the
appropriate coarse-ification of this notion in the HHS context.

Let (X,§) be an HHS and let Y < X be k—hierarchically quasiconvex, where k is some
arbitrary hierarchical quasiconvexity function.

Definition 14.1 (Gate tuple). Let x € X. Fix W € §. Recall that my ()) is k(0)—
quasiconvex in CW. Accordingly, we have a uniformly coarsely lipschitz coarse projection
pw : CW — my(Y) given by

pw(a) = {bemw(Y) : dw(a,b) < dw(a,mw(Y)) + 1},

which sends points in CW to nonempty sets of diameter bounded in terms of x(0) and E.
Let by (x) be an arbitrary point in pyy (mw (x)), for each W e §. O

Lemma 5.5 of [BHS19] produces a constant C;, depending on E and k, such that the
tuple (bw (x))wez is Ci—consistent. Applying realisation (Theorem and hierarchical
quasiconvexity of ) yields a point gy(z) € Y such that dy (bw (x), gy(x)) < Cq for all W,
where Cy depends on k, E, and C.

Accordingly, we have a gate map gy : X — ) with the following properties:

e gy is an (Lj, Ly)—coarsely lipschitz L;—coarse retraction, with L; depending only on
the HHS constants and the function k.

e Forall U € § and all z € X, the set 7wy (x) uniformly coarsely coincides with the image
of my(z) under coarse closest-point projection to the quasiconvex subspace 7y ()).
(Here, "uniformly" means "dependent on (X, §) but independent of U and z".)

Remark 14.2 (Iterated gates). If Y © Z are hierarchically quasiconvex subsets, then gy (x)
lies at bounded distance from gy(gz(x)), where the bound depends only on the hierarchical
quasiconvexity functions of ), Z and the HHS constants. O

A great deal of further discussion of the gate map can be found in [BHS17¢, Section 1].
We will introduce various other properties of gates as needed. For example, later we will see
that in an HHG (G, §), given a hierarchically quasiconvex subset ), it is possible to make
gy a Stabg(Y)—equivariant map, using a bounded perturbation.
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15. STANDARD PRODUCT REGIONS

One of the most important notions in the HHS world is that of standard product regions.
One intuitive idea the reader should have in mind is: in an HHS, there are various hierar-
chically quasiconvex subspaces, each of which is coarse-median-preservingly quasi-isometric
to the product of "simpler" hierarchically hyperbolic spaces. These are standard product
regions, and the ambient HHS is weakly hyperbolic relative to them — indeed, coning them
off yields a space quasi-isometric to CS, where S € § is the unique E-maximal element.

We recall from [BHS19, Section 5| the notion of a standard product region. We will
formulate things somewhat more explicitly than in [BHS19], give a bit more detail, and
correct two misstatements.

Let (X,§) be a hierarchically hyperbolic space. Fix U € §. Recall that §y is the set of
V e with V £ U, and let 35 be the set of V with V_LU.

Let k = F, and let

. E"‘ be the set of tuples (pv)veg, € HVE&U CV that are xk—consistent, and let
o [E7" be the corresponding set of k—consistent tuples, with §y replaced by Sﬁ

For each (p, q) € Ff; x Ef;, we obtain a (k + E)-consistent tuple f(p,q) € [ [,c3 CV whose
V—coordinate is py if V £ U, and gy if VLU, and pg otherwise.

(The consistency of the tuple f(p,q) is verified in [BHS19, Construction 5.10]. This re-
lies on [BHS19, Proposition 1.8] (the source of the x + E), which is a coarse analogue of
Lemma about real cubings, and which essentially depends on the partial realisation
axiom. Moreover, nonemptiness of F}; and Ef; also relies on the partial realisation and
consistency axioms.)

So, Theorem provides z € X such that for all V' € §, we have dy (z, fy) < ro(k + E),
where fy is the V—coordinate of f(7,q).

This gives a map f : F{j x Ef; — X whose image we denote by E’? We recall the following
from [BHS19, Section 5]:

Lemma 15.1. P} is hierarchically quasiconvex, with hierarchical quasiconvexity function
depending only on k and (X,§) and the associated constant E.

Moreover, if VAU or U &V, then diam(my (PE) U p%)) is bounded above by a constant
depending only on k and the HHS structure (but independent of U ).

Proof. Let x,y € Pj. Then by construction, for all V as in the "moreover" part of the
statement, we have that 7y (z) and 7y (y) are both ro(k + E)-close to p. This proves the
"moreover" assertion.

We now show that for all V' = U or VLU, we have that my(Pf) uniformly coarsely
coincides with the uniformly quasiconvex set my (&X'), and is therefore uniformly quasiconvex.

Indeed, fix such a V' and consider my (a) for some a € X. Then {my(a) : W € §} is an
E—consistent tuple. Form a tuple @ by changing the CW—coordinate of the preceding tuple
to p% whenever U & W or UAW. Restricting @ to §y and 35 gives k—consistent tuples
di € Fj and dy € Ef;. By construction, my (f(d1, d2)) is uniformly close to 7y (a), as required.

Now fix a constant L and suppose that a € X satisfies dy(a, Pj) < L for all V € §.
Then (my(a))yez is an E-—consistent tuple. Let b be the tuple obtained by changing the
V—coordinate to pg for VAU or U £ V. Then b is a (k + E)—consistent tuple, and there
exists « € Pfj such that my(x) is ro(k + E)—close to the V—coordinate of b for all V. On the
other hand, dy(a,z) < L + ro(k + E) for all V, so by Theorem [10.7, dx(a, z) is bounded
uniformly in terms of L, s, i.e. a is close to Pj;. Thus P} is hierarchically quasiconvex. [J

Fix once and for all a constant & as above (we can take x = F), and let |Py = Pjj. Fix an
arbitrary basepoint zo = f(po, o). Consider the set Ffj x {qo}, and let |[Fiy = f(F}} x {q0})-
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Similarly, let @ = f({po} x E};). Arguing exactly as in the proof of Lemma @ shows
that Ey and Fy are hierarchically quasiconvex, with hierarchical quasiconvexity function
depending only on x and E. In particular, this function is independent of the basepoint
f(ﬁoa (70)

We metrise Fyr, By by equipping them with the subspace metric coming from X

Remark 15.2 (Gates in product regions). We denote by a function, depending only on
the HHS constants, such that each Py, By, Fyy is k*—hierarchically quasiconvex.

Let g : X — Py denote the gate map. Then (up to uniform enlargement of x*(0)), we
have that, for all V € § and all x € X, the point my (gy(x)) is £ (0)—close to:

e WWifUZVor UhV;
o my(z)if ULV or UC V.

Similarly, for any choice of ¢y € Iy}, letting gp, : X — Fy, we have for all 2z € X,V € §
that 7y (gr, (x)) is £*(0)—close to:

. p‘U/ifU;VorUrhV;
o y(x)if VEU,;
o Ty (go) if VLU.
A similar statement about the gate map to Ey = f(po x Ef;) holds, except in the second
bullet point, L replaces £, and in the third bullet point, = replaces L and 7wy (pp) replaces

—

v (q0)- O

As in Proposition 5.11 of [BHS19|, Fyy and Ey are hierarchically hyperbolic spaces. In
general, the statement of Proposition 5.11 is not quite accurate in the case of Ey; here is the
corrected version:

Proposition 15.3. Let §y be the set of V € § with V = U. Let A € § be such that every
V e § with V1U satisfies V E A and A is not the unique =-maximal element of §. Then:

(1) (Fu,3Sv) is an HHS, with constants depending only on E.

(2) (Fu,3§) is an HHS, with constants depending only on E.

(3) (Eu,s§) is an HHS, with constants depending only on E. Moreover, for all V € §
with V. +U, the diameter of my (Ey) is bounded in terms of E.

(4) (Ey,&a) is an HHS, with constants depending only on E. Moreover, the complezity
is strictly lower than that of (X,F).

Proof. The assertions about (Fy,§) and (Ey,§) follow from hierarchical quasiconvexity
and [BHS19, Proposition 5.6]. The assertion about (Fi7,§p) follows exactly as in the proof
of Proposition 5.11 of [BHS19]. In particular, (Fa,§4) is an HHS, and Ey is uniformly
quasi-isometric to a hierarchically quasiconvex subset of Fi4. Hence, by [BHS19, Proposition
5.6], (Ey,$4) is an HHS. The statement about complexity follows since A is not E-maximal
ng. O

Remark 15.4 (Visitor from the past and future: clean containers). In most of the natu-
ral examples (e.g. mapping class groups and fundamental groups of compact special cube
complexes), the HHS structure satisfies a stronger version of the orthogonality axiom called
clean containers.

This says that for all V' € §, and all U = V, if there exists W = V such that W LU, then
there exists T'= V such that T1U, and if W =V and W_1U, then W = T.

First formalised in [ABD21], this property will often be assumed in later sections, and is
defined again later, where we start to use it. This property implies in particular that for each
U € §, there is a unique U+ € § such that VLU if and only if V = U*. In this situation,
Proposition 5.11 from [BHS19] holds as written, and in fact §4 = §y1 and Ey = Fy..
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The reader should compare the notion of clean containers in an HHS structure to the
identical notion for real cubings from Definition [4.40. U

Remark 15.5 (Visitor from the future: wedges). As for real cubings, one can ask that an
HHS (X, §) has wedges, i.e. if U,V € § have the property that there is some W with W C
U,W £ V, then there is a unique W that is E—maximal with this property. This is completely
analogous to the notion for real cubings (Definition . We will not need the notion of
wedges in the next few sections — though some of the questions in Section |21 mention wedges
— but we will use this notion (and remind the reader about it) in Section U

Remark 15.6. Elsewhere in the literature, one works mainly with (Fg, §7), so the incorrect
statement of Proposition 5.11 in [BHS19] does not have serious effects. We take the oppor-
tunity to point out the places in the literature where one should really use Proposition |15.3
above instead:

e In [BHSI17h], following Remark 3.5, one should use (Ey,§4) rather than (Ey, §5).

e In [BHSI7al, on page 14, one should again use (Ey,§a) rather than (Ey,3).
The point is that the sets §4 and Sﬁ differ only on elements U in which Ey has
bounded image in CU, so passing from the latter to the former has no geometric
effect. However, § 4 satisfies the orthogonality axiom, while i, as defined in Section
5 of [BHS19], might not.

e In the proof of Theorem 3.4 of [DHS17|, (Ey,§a) should be used, to obtain a lower-
complexity HHS structure.

e In several places in [DHS17|, one has a group G acting on an HHS (X, %) by HHS
automorphisms, and one wishes to consider an action of Stabg(U) on Ey by HHS
automorphisms. The question is which index set to use for the HHS structure on Ey .
In all but two places, it suffices to use (Ey,§) as in Proposition instead of the
HHS structure mentioned in Section 1.3 of [DHS17]. In the proofs of Theorem 9.13
and Theorem 9.20, we wish to have Stabg(U) act on an HHS with underlying space
Ey and strictly lower complexity. There are ways to correct this using an application
of [DHS17, Proposition 9.2], but we note that those two theorems have recently been
given a simpler proof by Petyt and Spriano [PS20] and so do not pursue the matter
further here.

All the above proofs work as written under the extra assumption of clean containers. O

By the previous proposition and Proposition 8.27 of [BHS19|, Fiy x Ey is a hierarchically
hyperbolic space, where the index set has the property that every element whose associated
hyperbolic space is not a single point belongs to Fy w S%,, and each Fyy x {e},{f} x Ey is
uniformly hierarchically quasiconvex.

The metric on Fyy x Ey is the £1—metric (where the factors still have the subspace metric
from X'), and the coarse median px on Fyy x Ey is given by (up, pug), where up, up are the
coarse media on Fy7, By coming from their hierarchically hyperbolic structures.

Define a map ¢ : Fyy x Ey — X as follows. Given x € Fyy,y € Ey, let Z € F}j be (v (z))v

and let 7€ Ef be (my (y))v. Let ¢(z,y) = f(Z,7).

Proposition 15.7. There exist constants Cy,Cs, C3, depending on E but independent of U
and xg, such that ¢ is C1—quasimedian (Cy, Co)—quasi-isometric embedding whose image is
at Hausdorff distance Cs from Py.

Remark 15.8 (Quasimedian). By C1—quasimedian, we mean that for any triple in Fyy x Ey,
the coarse median is taken C—close to the coarse median of the images of the points in the
triple. In [Bow13|, such maps are called quasimorphisms, but this word has another common
meaning, so we changed terminology. O
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Proof of Proposition[15.7. Let (z,y), (s,t), (w, z) € Fiy x Ey. Let m € Fyy x Ey be the coarse
median of these three points. Then for each V = U, the V—coordinate of m is the coarse
median of my (z), my (s), 7y (w), and for VLU, the V—coordinate of m is the coarse median
of my (y), mv (t), 7y (2), where coarse medians are taken in the hyperbolic spaces CV. (Here,
we are working in the hierarchically hyperbolic structure on Fyy x Ep7, where the projection
of (z,y) to CV,V £ U is my(x) and the projection to CW, W LU is mw (y).)

Now, for each V' & U, we have that my (¢(z,y)) is ro(k+ E)—close to my (x), and for W LU,
mw(o(z,y)) is ro(k + E)—close to my (y). For all other W, mw (¢(z,y)) is ro(k + E)—close to
pl. Analogous facts hold for (s,t) and (w, 2).

So, the coarse median m’ (in X) of ¢(z,y), ¢(s,t), p(w, ) has the following V—coordinates,
for Veg:

e If V C U, then 7y (m’) is C]—close to the geodesic from 7y () to my (s), and similarly
when either of z or s is replaced by w; here C{ = C(ro(k + E), E).
e [f VLU, then the same holds, but with x, s, w replaced by v, 1, z.
e Otherwise, my (m’) is ro(k + E)-close to pY,.
Hence, by the distance formula (Theorem @, there exists C; depending only on Cf such
that dy(m/, p(m)) < C4, i.e. ¢ is Ci—quasimedian.

Next, we show that ¢ is a quasi-isometric embedding. Let sy be as in Theorem @ (i.e.
the smallest valid distance formula threshold) and let { = sg be a constant to be determined.

Let (z,y),(s,t) € Fy x Ey. Since z,s € Fy, we have dy (z,20) < ro(k + E) if VLU and
dv(z,p%) < ro(k + E) if VAU or U & V. So, letting ¢ > 10r¢(k + E), we have A, B > 1
(depending only on () so that, by the distance formula,

dr, (x,s) =a,B 2 dy(z,s).
VeUdy (z,s)=¢

Similarly,

de, (Y1) =a,B > dv (y,t).
V LU dy (y,t)>C

Hence
dryx ey ((@,9), (s,1)) =428 > dy(z,s) + > dv (y,1).
VeUdy (z,s)=C V1Udy (y,t)=¢

Now, if V = U, then |dy (z,s) — dy(o(z,y), d(s,t))| < 2ro(k + E). So, if dy(z,s) = ¢ >
207 (K + E), we have

TV (2,5) < dy (0(2.9). 6(5,1) < 1pv (@:5).

When V LU, the same inequalities hold with x replaced by y and s replaced by t on the far
left and far right.

So,
10
Y dvwe) <y > dv (6(2,9),6(5,1)
VeUdy (z,s)=¢ VEUdy (¢(z,y),¢(s,t))>9¢/10
and similarly
10
Y, dvh < 2. dy (¢(z,9), 6(s,1)).
V1Udy (y,t)=¢ V1Udy (¢(z,y),0(s,t))>9¢/10

Now, applying the distance formula with threshold 9¢/10, having choosing ¢ sufficiently
large in terms of ro(k + F) and sg, we obtain uniform constants A’, B’ such that

dFUXEU((CE?y)J (S’t)) < AldX(¢($7y>7¢(37t)) + B/‘
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A similar argument gives the lower bound, so ¢ is a uniform quasi-isometric embedding.

Finally, by construction, im(¢) € Py. On the other hand, let f(&, %) € Py. Then (¥, q) €
< {qo}, and (po,y) € {po} x £y, so 2’ = f(Z,q) € Fu and y' = f(po,y) € Ey. A
simple application of the distance formula now shows that dx (f(Z,7), ¢(2’,y’)) is uniformly
bounded, so Py is Hausdorff-close to im ¢. O

So, in summary, for each U € §, we have an associated subspace Py — X such that:

e Py is hierarchically quasiconvex, with hierarchical quasiconvexity function x> inde-
pendent of U (it depends only on the constants from Definition .

e For each W € § such that U = W or UhW, we have diam(mw (Py) u pY,) < £(0).

e Py is the image of a uniform quasi-isometric embedding ¢ : Fy x Ey — X such that
each Fyy x {e} and {f} x Ey has x*—hierarchically quasiconvex image. We abuse
notation and let Fy; x {e} denote this image (and we just say Fyy when the particular
parallel copy has been fixed).

e Fach parallel copy Fyy has the property that 7y is £*(0)—coarsely surjective when
V £ U, and, when V LU, the set my (Fy) has uniformly bounded diameter, by £*(0).
The reverse holds when Fy is replaced by Ep.

e If V £ U, then for each parallel copy Fy, we can choose a parallel copy Fy such
that Fy is contained in a x*(0)-neighbourhood of Fyy (this is Proposition 5.16
from [BHS19]).

Remark 15.9. If ULV, then Py and Py have coarse intersection containing a quasi-
isometrically embedded copy of Fyy x Fy. Choosing some « in this subspace, we see that if
W e § has the property that each of U,V is transverse to W or properly nested in W, then
p%, pI[/JV both uniformly coarsely coincide with my (x) and therefore are coarsely equal. This
reflects the following lemma. O

Lemma 15.10. Let W, U,V € §. Suppose that ULV, and each of U,V is either properly
nested in W, or transverse to W. Then

Proof. This is Lemma 1.5 in [DHS17]. Fix p € ny(X),q € my(X). By Definition [10.1](8),
there exists « € X such that

4 dU(:‘U’p) < E7

e dy(z,q) < E, and, most importantly,

e dy(z,pY,) < F and

b dW(«T7p[‘§) < E.
The triangle inequality, plus diam(my (z)) < E, now yields the lemma. O

Finally, we mention how to make product regions function nicely with actions by HHS
automorphisms:

Remark 15.11 (Equivariant product regions in HHG, first version). Later, the following
flexibility will be useful. If Py is as above, and L is some constant, and P}, is any subspace
that is L-Hausdorff close to Py, then P/, has the same properties as Py listed above, except
the uniform constants and hierarchical quasiconvexity functions now also depend on L.

In particular, if (G, §) is a hierarchically hyperbolic group, then for each U € § and g € G,
we have the following. Recall the map f : F}; x Ef; — G whose image is P;;. Suppose that
x € Py. Define gf : FixEf; — Gby (gf)(p,q) = g-f(p,q). We also have f9 : FryxEy — G
as defined above. By Definition we have an isometry g : Ffj x Efy — Fpy; x Eff; arising

from the isometries g : CV — CgV for V = U or VLU. Since gpg = pgg whenever UhV
or U = V, we have a uniform constant L, depending only on the HHS constants, such that
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da(9f(p,q), f9(g(p,q)) < L for all p,q. In particular, gPy and P,y are at bounded Hausdorff
distance.

Now let §1 < § contain exactly one U € § in each G—orbit. For U € §1, let Pg = Py,
and redefine Py to be |J geStabe (U) gPB. Then, for arbitrary U € §, we can write U = gU
for U € §, with ¢ in a fixed left coset g Stabg(U). Let Py = gPp. Since Py is Stabg(U)—
invariant, this definition is independent of the choice of g in the given coset. Finally, by
the preceding discussion, Py is at bounded Hausdorff distance from the original U-standard
product region.

Hence, when dealing with HHGs, we can and shall assume that the product regions
have the additional property that P,y = gFPy for all U € § and g € G. g

Remark 15.12 (Equivariant product regions in HHG II). There is another way to arrange
for the set of product regions in an HHG (G, §) to be G—-invariant. For each U € §, for
suitably large (in terms of the HHS constants) x, let Py be the set of € G such that

dV(xvpg) S K

whenever U = V or UAV. It is now immediate from the definition of an HHG that gPy =
Pyy, and in particular Stabg(U) acts on Py, for g € G and U € §. On the other hand, the
product region Py as defined above is at uniformly bounded Hausdorff distance from the
image of ¢, and hence has all of the properties required of a product region (at the expense
of a uniform enlargement of the hierarchical quasiconvexity function). O

16. THE CUBICAL APPROXIMATION THEOREM

The coarse median map p : X2 — X actually enjoys a stronger property than merely
making X a coarse median space, expressed by the following proposition, which states that
hulls of finite sets in X can be approximated by C' AT (0) cube complexes.

The idea is to generalise the fact that in a Gromov-hyperbolic space, any finite set of points
can be approximated by a tree in the following sense: if § is the hyperbolicity constant, and

Z1,...,Tn are points, then there is a constant C' = C(d,n) and a (1,C)-quasi-isometric
embedding of a tree T', whose leaves get sent to some of the x;, and whose image coarsely
coincides with the quasiconvex hull of {z1,...,z,}.

The following is Theorem 2.1 in [BHS17c|, and has been reproved (and generalised) by
Bowditch in [Bowl8al Theorem 1.3]. A more refined version, under extra hypotheses on the
HHS structure, was recently established by Durham-Minsky-Sisto [DMS20].

Proposition 16.1 (Cubulation of hulls). Let (X,§) be a hierarchically hyperbolic space.
Then there exists My (depending on the HHS constants) such that the following holds. Let
0 =06y and n € N.

There exists constants My = 100nMy such that for all M = My, we have a constant C' = 1
satisfying the following. Let A = {x1,...,x,} € X and let U be the set of U € §F such that
du(xi,xj) = M for some i,j. Then there exists a finite CAT(0) cube complex Y and a map
f:Y —> X such that:

o [ is a (C,C)—quasi-isometric embedding whose image is at finite Hausdorff distance
(depending only on the HHS structure and M,n,0) from Hy(A).

o There ewist Z;,,...,2;, € Y such that dx(f(2i;),7;) < C for all j and Y is equal to
the convex hull in Y of {Ziy,..., 24}

o Let i,b,é €Y be vertices and let i € YO be their median. Then dx(f (i), m) < C,
where m = p(f(a), f(b), f(¢)) denotes the coarse median. (In other words, f is C—
quasimedian.)

e Fach hyperplane h of Y is labelled by an element of U < § such that hyperplanes h, h'
cross if and only if their labels U, U’ satisfy U LU'. In particular, dimY < y.
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Finally, if v is a combinatorial geodesic in Y, then f o~ is a (D, D)-hierarchy path in X,
where D depends only on C.

We say more about the labels below.

Remark 16.2. The entire proposition is [BHS17c, Theorem 2.1], except for the final state-
ment about hierarchy paths, which follows from the quasimedian quasi-isometric embedding
statement, together with Lemma 1.37 of [BHS17c|. O

The proposition directly strengthens the property of being a coarse median space; the
definition of a coarse median space asks that any finite set of points is contained in the image
of a quasimedian map from the O-skeleton of a finite CAT(0) cube complex. For any finite
set in X, the corresponding cube complex Y satisfies the required properties from [Bow13|
Section 8|, plus more: its image is coarsely median convex, by the above proposition combined
with Proposition [13.3.

Later we will mainly be interested in the case of Proposition [16.1 where n = 2, i.e. in
using CAT(0) cube complexes that are intervals for their intrinsic median to approximate
hulls of pairs of points in X. It will be useful to use some parts of the proof of the proposition
— i.e. some extra properties of the cubical approximation that follow from the construction
in [BHS17c, Section 2].

Accordingly, we now discuss the construction of Y in the simpler setting where n = 2.

Remark 16.3 (Hyperbolicity unnecessary when n = 2). Because we are working with n = 2,
we will not actually use that CU,U € § is hyperbolic during the construction. We will
comment on this at the end, and on a more general statement of the proposition that is
therefore true when n = 2. O

Fix 2,y € X. Fix 6 > max{fy, E}, so that for some function x depending on #, Lemma 6.3
of [BHS19| implies that Hy({z,y}) is k—hierarchically quasiconvex.

Let My = My(E,0) be a constant to be determined, let My > 200M, and let M > M;.

Let Relys(z,y) be the set of U € § such that dy(x,y) = M. Recall from Lemma [11.4 that
Relys(x,y) is finite as long as we chose My > FE.

For each U € Rely/(x,y), let 4 be a geodesic joining 7y (z) to my(y). Let Rel§,(z,vy)
be the set of V' € Relps(x,y) with V & U. By the consistency and bounded geodesic image
axioms, V € RelY;(z, y) implies that there is a point rg € vy with dU(rg, pg) < E.

For each U € Rely/(z,y), choose a (finite) set of points {p },cs,, in vy with the following
properties:

o dy({z,y},pY) = My for all i € Iyy;

o dU(pZU,pg-]) > My for i # j in Iy;

o dy(®l, 7)) = My for i € Iy and V e Rel{;(z,y);

e each component of v —{p¥, 1}, : i € I7, V € Rel{;(x, y)} has diameter at most 20 M.

Figure shows a heuristic picture of the above ingredients, using the same z,y and
elements of § as in Figure

We are now ready to define walls in Hy({x,y}). For each U € Rely(z,y) and each
i € Iy, let W (U,1) be the set of z € Hy({x,y}) such that every point on vy that is 6—close
to my(z) lies in the same component of vy — {p{} as the endpoint of vy in 7wy (x). Let
W(i,U) = Hy({z,y}) — W(i,U). The sets w(i,U), W (i,U) are the p{ -halfspaces.

Then the pair w(i,U) = (W(i,U),@W(:,U)) is a wall in Hp({x,y}), i.e. a bipartition.
We say that w(i,U) separates z,z’ if z,2’ lie in distinct pZU —halfspaces. Since there are
finitely many p{ for each U, and finitely many U € Rely/(z,y), we have defined finitely
many walls. Accordingly, Hy({z,y}), with the given set of walls, is a wallspace in the sense
of [HP98, Nic04].
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FIGURE 19. The geodesics, points rg;, and extra "wall-points" p;-/v", shown
in the example from Figure

Following [Nic04l [CNO05|, define the CAT(0) cube complex Y dual to this wallspace as
follows. A O—cube ¢ € Y is coherent orientation of the walls, i.e. a map from the set of walls
to the set of halfspaces such that

e for all w(i,U), the halfspace §(w(i,U)) is one of the two p—halfspaces;
e for all U,V and all ¢ € I, j € Iy, we have

J(w(@i,U)) ng(w(i, V) # &
We join 4,7’ by a 1-cube if they differ on exactly one wall, and then fill in all cubes whose

1-skeleta appear.
The hyperplane h(i,U) of Y corresponding to the wall w(i,U) is given a label,

Lab(h(i,U))|=U.

| | | | | | |
U, T T T T T T T T T T T T
e I o [ i [ N e e e
| | | | | | | | | | | |
| | | | | | | | | | | |
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UZA/_/H/_/ U2 "~ ~"
Vi Vo Us V3

F1GURE 20. The approximating cube complex in the example from Figure[19]
with the hyperplanes labelled.

Having defined the finite CAT(0) cube complex Y, we now define the map f:Y — X
and establish the properties mentioned in the proposition, along with some other properties
we will use.
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Fix a O—cube § € Y. We define f(g) € X as follows.

For each U € Rely(z,y) and each i € Iy, we have a p{-halfspace §j;y chosen by the
coherent orientation 7.

For each V' € Relps(x,y), let S(i,U, V) be the intersection of all closed subintervals of vy
that contain all points in 7y that are f—close to my (9 7).

Fix V. For all U, U’ and i,7, coherence provides a € g(i,U) n g(i',U"). Now, choose
a € vy that is f—close to my(a), which is possible since a € Hy({z,a}) by definition. So
ae S, UV)nSE,U,V).

We have shown that for any V', the subintervals S(i, U, V') pairwise intersect as i, U vary.
So, there exists by € (), ;; S(4, U, V).

For V ¢ Rely(z,y), let by € my ().

We next observe that, for each V' € F, the set of possible by has diameter bounded in
terms of M. When V ¢ Rely/(x,y), this is clear.

Suppose that V € Rely(z,y). Suppose that a,b € vy satisfy dy(a,b) > 50M, where a,b
are respectively —close to my (a), my (b) for some a,b € X. Then one of the following holds:

e Some p}/ separates @,b in yy. Then, provided My is sufficiently large in terms of 6,
we have that w(j, V') separates a, b, and @, b cannot both belong to by .
e For some U € Rel}@ (z,y), the point rg separates @, b, and no p}/ has this property.
Our choice of 50Mj then implies that there are at least two such U, and one such
U has both of @, b at least Myfar from r‘[f.
Hence, provided My is large enough in terms of E and 6, consistency and bounded
geodesic image imply that dy(a, b) > 50M.
Moreover, by Definition , we can assume that U is E-minimal in
Rely(z,y). B
Choose @', b' € vy respectively 6—close to 7y (a), 7y (b). Then @',V are separated
by some pZU , and so @, b cannot both lie in by .

We have shown that the set of possible by has diameter bounded by some By depending
only on My, provided My is sufficiently large in terms of E and 6. (This was a version of
Lemma 2.6 in [BHS17¢|, simplified by the assumption n = 2.)

Exactly as in Lemma 2.7 of [BHS17c|, there exists By = Bj(Mp) such that (by)yeg is
a Bj—consistent tuple, so realisation (Theorem provides a point f(y) € X such that
dy (f(Y),by) < roB; for all V € §.

This defines the map f:Y — X.

The proofs that f is a quasimedian quasi-isometric embedding whose image coarsely co-
incides with Hyp({z,y}) do not seem to simplify significantly when n = 2, so we refer the
interested reader to [BHS17c].

We now discuss the remaining statements from Proposition [16.1 and some additional facts
about the hyperplanes in Y that follow fairly easily from the construction in the case n = 2
but which are not stated exportably in [BHS17c].

First, let & be the 0—cube of Y obtained by setting & (w(i,U)) = w(¢,U) for all i, U, and
similarly define ¢ by g(w(i,U)) = W (i,U). Note that x € &(w(i,U)) and y € g(w(i,U)) for
all 2, U, so these are really coherent orientations.

Note that every hyperplane of Y separates & from ¢, so Y is the convex hull in Y of
{#,9}. By uniformly enlarging the constant C from Proposition [16.1 and perturbing f, we
can assume f(Z) =z, f(§) = y.

Accordingly, letting denote the set of hyperplanes in Y, we can put a partial
order on Hyp(Y), denoted <, such that h < v if h separates v from . Given h,v € Hyp(Y),
exactly one of the following holds:

o h=u;
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e h,v cross;
e h<wvorwv<h.
The next statement relates < to the partial order < on Relp/(z,y) from Lemma [11.6.
Recall that distinct U,V satisfy U < V if UAV and dy (z,p¥) < E.

Proposition 16.4 (Extra properties of the cubical approximation when n = 2). The map
f:Y — X, and the map Hyp(Y) — Rely(z,y) given by h — Lab(h), have the following
properties:
(1) Lab(h)LLab(v) if and only if h and v cross (i.e. h,v are distinct and <—incomparable).
(1I) Suppose that h,v € Hyp(Y) satisfy v < h and let Lab(v) = V, Lab(h) = U. Suppose
that UAV. Then V < U.
(II1) Suppose that h,v € Hyp(Y) and Lab(v) = V, Lab(h) = H. Suppose that V & H. Let
pf{ € vy be the point determining the wall corresponding to h. Then
e if v < h, then TYI lies in the same component of yg — {pfl} as the endpoint in
i (T);
e if h < v, then 7“}1/1 lies in the same compoonent of vy — {pZH} as the endpoint in
T (y).
(IV) There exists Bo = Ba(M) such that the following holds. Let hy, ..., hy € Hyp(Y). Let
& be a combinatorial geodesic in'Y that joins some 0—cubes d,lA) and crosses exactly the
hyperplanes hi. Then for all V ¢ {Lab(h1),. .., Lab(hy)}, we have

~

dy(f(a), f(b)) < Bo.

Proof. Assertion () is just Lemma 2.12 from [BHS17¢]|.

We now prove assertion (II). Suppose that v < h and let Lab(v) = V,Lab(h) = U.
Suppose that UhV. Then either V < U or U < V. Suppose that U < V, i.e. dv(a:,pgv) < F.
Let 2 € Iy and j € Iy be such that the hyperplanes v, h respectively correspond to the walls
w(j, V), w(i,U). Since v < h, we have that x is separated from h by v, i.e. W(j,V) < w (i, U).

By Lemma below, there thus exists z € W (i,U) — W (j,V). So, letting z € yy be
f—close to my(z), we have dy(z,py) = du(pY,pl;) = Mo — E, since dy(y, p;) < E by
consistency and U < V. Hence dy(z, p);) = My — 0 — E > E, whence dy(z, p¥) < E. Thus
dy(z,2) < 3E. So, z € w(j,V), a contradiction. Hence V < U.

Next, we prove . Suppose that v < h and V & H. Choose j,V and ¢, H so that
v, h correspond to w(j,V),w(i,H). Since v < h, we have w(j,V) < w(i,H). Let z €
w(i,H) — w(j,V) (using Lemma [16.5). Since z € W(j, V), we have that dy(z,z) > E, so
by consistency and bounded geodesic image, pl‘g lies E—close to the subpath of vy joining
i (x) to pfl , as required. The proof of the statement about h < v is identical.

We now prove assertion (IV). Fix V € §. If V ¢ Rely(x,y), then, since the image of f
is uniformly close to Hp({z,y}), the points 7y (f(a)) and my (f(b)) lie uniformly close to a
geodesic in CV of length at most M, so dy (f(a), f(b)) is bounded in terms of the constants
from Proposition [16.1, as required.

So, suppose V' € Relps(z,y). For 1 < i <k, let U; = Lab(h;) (note that these labels need
not all be distinct).

For each W € Relys(x, ), let by (a), by (b) be the W-coordinates of the tuples used above

~

to define f(a), f(b) respectively.
By hypothesis, by (a) = by (b) unless W = U; for some i, so in particular, by (a) =

by (b). Since by (a) and by (b) are respectively roB;—close to my(f(a)) and my(f(b)), the
claim follows, with By = 2rgB;. O

The auxiliary lemma needed above was:
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Lemma 16.5. Suppose that (i,U), (4,V) are distinct. Then w (i,U) # w (4, V).

Proof. If ULV, then by [BHS17c, Lemma 2.12|, the corresponding walls cross and are in
particular distinct.

If UAV, then suppose that w(i,U) = w(j,V). Without loss of generality, U < V. Choose
z € X such that 7y (z) is #—close to a point z € 4y such that Z is in the same component of
o — {pY} as the endpoint in 7 (y), but dy(pY, 2) < 10(E + 6). Note that 2 € W (i, U).

Provided My is sufficiently large in terms of E, 0, we have dy/ (2, pf;) > E, so dy (z,z) < 3E,
by consistency, so z € W(j, V), as required.

Suppose that U & V and that w(i,U) = w(j,V). Without loss of generality, p;y lies
between the endpoint of 7y in 7y (x) and the point r{{ . So, by consistency and bounded geo-
desic image, 7y (W (j,V)) is contained in the E-neighbourhood of 77 (). On the other hand,
we can choose z € W(i,U) = W (j,V) so that my(2) is 10(E + §)—close to p¥, contradicting
that dy(z, pZU ) > My provided My is sufficiently large.

A similar argument works when U = V. O

Remark 16.6 (The relative HHS case). Two generalisations of HHSes were introduced
in [BHS19] and warrant mention in connection with the cubical approximation theorem. First
is the notion of a hierarchical space (X, ). This is defined exactly as in Definition (10.1)),
with the following changes:

e We still require each CU, U € § to be a geodesic space, but we do not require it to be
hyperbolic;

e for convenience, we require the projections 7y to be E—coarsely surjective (although
this is not strictly necessary, there is little loss of generality in practice and it simplifies
explanations).

Hierarchical spaces are too general to be able to prove the distance formula along the lines
of [BHS19]. However, the key point is that the realisation theorem, Theorem [10.5, makes no
use of hyperbolicity and therefore holds in the context of hierarchical spaces (see Theorem
3.1 in [BHS19] and the paragraph preceding it).

A relative HHS is a hybrid of the two notions: (X, ) is a relative HHS if Definition m
holds, except that we allow the geodesic space CU,U € § to be non-E-hyperbolic if U is
C-minimal (see [BHS19, Definition 6.8|.

The statement of Proposition [16.1 and that of Proposition [16.4] continue to hold in the
relative HHS context, when n = 2, in the following sense.

Fix z,y € X. Given 6 > 0, define Hy({z,y}) as in the HHS case, with the following
modification: recall that Hy({x,y}) is the set of points z that project 6—close to every CU-
geodesic from 7y (x) to my(y) for all U € §F. We modify the definition as follows: if U € § is
CE-minimal and CU is not E-hyperbolic, we fix a geodesic vy in CU from 7y (x) to 7wy (y),
and require 77 (2) to be 6—close to the geodesic vy only.

Lemma 6.12 of [BHS19] says that Hy({z,y}) is a coarsely lipschitz coarse retract of X, via a
map that, at the level of CU, is the coarse closest-point projection when CU is E-hyperbolic,
and is otherwise a coarsely lipschitz map to 4. Proposition 6.15 of [BHS19| then shows that
Hy({z,y}) inherits a hierarchical space structure from (X, F), and that this is actually an
HHS structure, because each non-hyperbolic CU has been replaced by a single geodesic ;.

We can now apply Proposition [16.1] to build a uniformly quasimedian uniform quasi-
isometry f : Y — Hg({z,y}), where Y is a CAT(0) cube complex and Hyp({z,y}) is given
the above HHS structure. Composing with the inclusion into X gives a quasi-isometric
embedding f : Y — X. The quasimedian part no longer makes sense, since X need not
be coarse median in the relative case, but the conclusion of Proposition [16.4] continues to
hold (the <—ordering on relevant elements works for any hierarchical space, and the inclusion
induces uniform quasi-isometric embeddings at the level of the CU). O
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17. © SAMPLE APPLICATION OF CUBICAL APPROXIMATION: HIERARCHICALLY
HYPERBOLIC CONE-OFF

A key feature of the theory of HHSes is the factored space construction from [BHS17a].
Since we appeal to it once, later in this section, we mention it here. Moreover, as an illus-
tration of the utility of the cubical approximation, we take the opportunity to give a more
conceptual proof than is given in [BHS17a.

The statement requires some preparation. Let (X, §) be a (relative) HHS. Let 4l < § be a
set of elements such that:

e Uetland V E U imply V € 4l and
e in the relative case, 4 contains every (necessarily =—minimal) V' such that CV is not
E-hyperbolic.

We denote the metric on X' by dy, and define a new metric d as follows. Given x,ye X,
let D(x,y) = dy(x,y), unless there exists U € i and e € Ey such that z,y € Fyy x {e}, in
which case we set D(z,y) = min{1,dx(z,y)}. Then let d be the length metric induced by
D. Let X = (X,d).

Our goal is to build an HHS structure (/'?,S — 4l). For each V € § — 4, we keep the
same (necessarily E-hyperbolic) space CV, and we keep the same relations, ps points. The
projections X — CV are just compositions of the set-theoretic identity X — X with the
projections wy : X — CV.

The main statement, Proposition 2.4 of [BHS17a], says:

Proposition 17.1 (Cone-off). (??,S —$1) is a hierarchically hyperbolic space.
Moreover, if a group G acts by HHS automorphisms on (X, F), and 4 is G—invariant, then
the induced action on (X,§ — ) is also by HHS automorphisms.

Proof. The statement about group actions is immediate from the construction, once we note
that projections have not changed, and the G—action on X (as a set) has not changed when
we changed the metric to produce X. In the new metric, the action of G on X will be an
action by uniform quasi-isometries, in view of the distance formula, once we prove that X is
an HHS, which we do presently.

Omne must check that (X, § — ) satisfies the axioms from Definition @ Most of this is
straightforward and we refer the reader to [BHS17a, Section 2|. The exception is the unique-
ness axiom; we verify this here using the cubical approximation, instead of the argument
in [BHS17al, which relies on gate maps to product regions.

Recall that we have to prove the following: there exists a function 6, : RT — R™, just
depending on the HHS constants for (X,§), such that for any x > 0, if z,y € X satisfy
dy(z,y) < & for all V € § — 4, then d(z,y) < 0u(k).

Fix k, let My be the constant from Proposition m (Mp depends on a choice of 6 for
defining hulls. We choose 6 large enough in terms of E that 6—hulls inherit HHS structures
from X, using Proposition 6.15 of [BHS19|, and base our choice of My on this.)

Let M; = 200My, and let M = 10(max{M;,x} + E). Fix z,y € X such that dy(z,y) <k
for all V e § — 4. Let Relpy(x,y) be the set of all V € § such that dy(x,y) = M. Since
M > Kk, we have Relpy(z,y) < 4L

Let max Relps(x,y) be the set of V' € Rely/(z,y) that are E-maximal among elements of
Relpys(z,y).

By Lemma [I1.1] there exists N = N (M) such that | max Rely (z,y)| < N.

Apply Proposition @ to produce a constant C' = C(M) and a (C, C)—quasi-isometric
embedding f: Y — X of a finite CAT(0) cube complex Y, satisfying the conclusion of that
proposition and Proposition m (see Remark @ for discussion of Y in the relative case).
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Given U € Rely(x,y), a combinatorial geodesic « in Y is called a U-path if, for all
hyperplanes h crossing «, the label satisfies Lab(h) & U.

Given a constant L, the U-path o is called L-long if d7(f(a), f(b)) = L, where the 0-cubes
d,l; are the endpoints of a.

Claim 12. There exists v such that the following holds. Let U € max Rely;(x, y) and suppose
a,be YO are joined by a 10E-long U-path v. Then diam 5(f ov) <v.

Proof of Claim[I2. Let A € § and suppose that U & A or UhA. We will bound da(f(a), p%)
uniformly, and same for f(b).

Since f(Y) is at uniformly bounded distance C' from Hpy(x,y), we have that m4o(f(Y))
is contained in the (EC + 6 + E)-neighbourhood of any CA-geodesic from m(z) to ma(y)
(or, in the relative case when A is E—minimal, our designated geodesic v4). In particular,
7A(f(a)) and wa(f(D)) are (EC + 6 + E)-close to such a geodesic.

Bound when U ¢ A: If U © A, we have d4(x,y) < M, because U € max Relys(z,y). So
da(f(a),z) < EC + E + 0 + M, and the same holds for f(b). By bounded geodesic image,
da(z,p4) < E+ M, so da(f(a),p%) < EC + E + 6 + 2M, and the same holds for £(b). Let
Ty = EC' + E 4 0 + 2M and note that Ty depends only on x and the HHS constants.

Transverse bound for "small" A: Similarly, if A is such that UhA, and da(z,y) <
50M + 2(EC + 0 + C), then da(f(a),pY) < Tp, after enlarging Ty by a uniform amount
depending only on M, C' and 6, and hence only on x and the HHS constants.

Transverse bound for "large" A: Next suppose that UhA and d4(z,y) > 50M +
2(EC + 6 + E). By consistency, we have (say) da(y, pY) < E and dy(z, pi}) < E. Since
f(@), £(b) map C—close to Hy(x,y), we have that wa(f(a), m4(f (b)) are (EC + E + 0)—close
to our CA-geodesic from 74 (z) to ma(y).

We claim that d4(f(a), f(b)) < 50M + 2(EC + E + 6). If not, then the points p,q €
[ma(z), ma(y)]ca respectively (EC + E + 0)-close to w4 (f(a)) and wa(f (b)) are at distance
at least 50M. .

By the construction of walls in Hy(z,y) used to produce Y, and the fact that a,b are not
separated by A-labelled hyperplanes, f(a) and f (l;) are separated by a wall corresponding to

a hyperplane h such that Lab(h) & A and d4(y, piab(h)) > 10M. But since d4(y, p%}) < 10E

whenever W = U and W & A, we have that Lab(h) &£ U. Hence a,b are separated by a
hyperplane not labelled by an element nested in U, a contradiction. So, d4(f(a), f(b)) <
50M +2(EC + E + 0).

Now, if w4 (f(@)), ma(f(D)) are both 10(50M + (EC + E+6))-far from pY, then the geodesic

in CA joining them stays E—far from p%, and the same is true of the geodesic from 74 (x)

~

to either m4(f(a)) or ma(f(b)). Hence, applying consistency to the transverse pair U, A, we
have that m (z), 7y (f(a)), 7 (f (b)) are all E—close to piy, contradicting that ~ is 10E-long
as a U—path.

Close to Py: Hence we can assume that d4(f(a), pY) < 71, and the same holds for £(b),
whenever U & A or UhA; here T1 is a constant depending only on x and the HHS constants.
By uniform hierarchical quasiconvexity of Py, we thus get a constant 71, depending only on
% and the HHS constants, such that d(f(a), Py),d(f(b), Py) < n1.

Orthogonality bound: We now produce Ty such that d4(f(a), f(b)) < T whenever
ALU. If A’ £ A, then A’ is also orthogonal to U. For such A’, no hyperplane v with
Lab(v) = A’ can separate & from b. Proposition thus yields T5.

Conclusion: Hence there exists 72, depending on 75 and the HHS constants, and a
point e € Ep, such that d(f(a), Fir x {e}) < no and d(f(b), Fy x {e}) < mp. Since f is
uniformly quasimedian and uniformly a quasi-isometric embedding, and Fy x {e} is uniformly
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quasiconvex, the image of fo~ is thus contained in a uniform d-neighbourhood of Fy; x {e} and
thus has d—diameter bounded uniformly in terms of x and the HHS constants, as required. [

Claim 13. There exists n < N and elements Uy, . .., U, € max Rel(z, y) such that Y contains
a combinatorial geodesic vy joining Z, ¥y, where:

e 1,9 are O—cubes respectively sent by f to z,y;
® v =1 -y, Where each v; is a U;—path; and
e ecach ~; traverses an edge dual to a hyperplane labelled U;.

Proof of Claim|[13. Let &, be the O—cubes in Y mapping to z,y respectively. Recall from
Proposition @ that Y is the cubical convex hull in Y of {Z, ¢}, and recall that there is a
partial order < on the hyperplanes of Y so that h < v if and only if h separates Z from v,
and <—incomparability is equivalent to crossing.

Fix U € maxRely/(x,y), and let H; be the set of hyperplanes h of Y with Lab(h) & U.
Note that at least one element of H; is labelled U.

Define a 0—cube p as follows. For each hyperplane h, we choose an associated halfspace
(component of Y — h) as follows:

e if h € Hi, we choose the halfspace containing z;

o if h ¢ H1 has exactly one associated halfspace containing a hyperplane v € H1, choose
that halfspace;

o if h ¢ Hi and h crosses every element of Hp, choose the halfspace containing z.

We need to know that we have oriented all the hyperplanes, and that this orientation is
coherent. Equivalently, we claim that, if there exist u,v € H; separated by h, then h € H;.

We now verify this. Let h,u,v be as above, with u < h < v. Since u and h do not cross,
Lab(u) and Lab(h) are not orthogonal, because of Proposition If Lab(h) = U, we are
done, so we can assume Lab(h) & Lab(u), since Lab(u) E U.

If Lab(u)hLab(u), then by Proposition we have Lab(u) < Lab(h), ie.

Lab(u .. . Lab(v
drabn) (T, pLabEh;) < E. Similarly, if Lab(v)hLab(h), then drqum) (v, pLabgh))) < E.
In particular, letting piLab(h) € YrLab(n) be the point used to define h, we have that pézggz))

and pézzgzg are respectively E-—close to points 7} = rizz((zg, Ty = régzgzg in Yrqp(n) that are

separated by, and each My—far, from p? .
Similarly, if Lab(u) &= Lab(h), then by Proposition [16.4, the points 7}, 7} are separated
by, and My—far, from pZ»U.

Lab(u)  Lab(v)
So, dLab(h) ('OLZb(h)’pLab(h)) = 2My — 2F.

Now, Lab(h) £U since that would imply Lab(h)LlLab(u). If Lab(h) = U, then h € Hq,
as needed, so assume not. If U & Lab(h), then we would contradict U € max Rely;(x,y).
So, UhLab(h), and pgab(h) is a bounded set that is E—close to pigzgz)) and pﬁzl;gz;, which
contradicts the inequality established above provided My > 5F/2.

Thus, if A separates two elements of Hi, then h € Hy.

Thus p is a well-defined O—cube of Y. We can likewise define a 0—cube ¢ (by changing the
orientations of exactly the hyperplanes in H;) so that the hyperplanes separating p,q are
precisely those in H;.

Let B be any combinatorial geodesic from p to q. Then g is a U—path that crosses a
hyperplane labelled U.

Now, we could have chosen U so that p = x. Indeed, just choose a hyperplane v dual to
an edge incident to x and let U € max Relys(x,y) be such that Lab(v) E U.

Let h be a hyperplane separating ¢ from g. Then Lab(h) & U, so Lab(h) = W for some
W e max Rely/(z,y) — {U}. In other words, letting the complexity of a pair p’, ¢’ of O—cubes
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be the number of elements W € maxRelys(x,y) such that p’, ¢’ are separated by some h
with Lab(h) € W, we have that (q,9) has strictly lower complexity than (Z,¢). So, we can
join g to y by a path «a, each of which is the concatenation of W—paths with the required
properties, for a total of at most | max Relp/(z,y)] —1 < N — 1 values of W. Thus fa is a
geodesic with the desired property, since § is a U—path crossing a hyperplane labelled U. [

Let v = 1y, be as in Claim . Let a;, l;z be the initial and terminal O—cubes of ~;,
for each i < n. (So, b = Ajt1-)

Let I be the set of i < n such that the U;—path ~; is 10E-long.

Foriel, Claimyields d(f(as), f(b;)) < v. Thus

d(z,y) < Nv+ Y 1d(f(a), f (b))
i¢l

Let ¢ ¢ I. Then dy,(f(a;), f(bi)) < 10E, by the definition of I. Since ; is a U-path, every
hyperplane crossing ~; is labelled by an element of Rely/(x,y) that is nested in U;. Hence,
by Proposition we have for all V £ U; or V ¢ Relys(z, y) that dy (f(a:), f(bi)) < Ba =
By(M, E,0), where By is the constant from the proposition. Let M! = max{Bs, M}.

So, Rely1 (f(@i), f(b;)) consists of elements of Relys(z, y) properly nested in U;. Hence we
can apply the above argument with the following changes:

e = and y are respectively replaced by f(a;), f (BZ),
e M is replaced by M,
e N(M) is replaced by N(M?).
Letting Y! be the approximating cube complex, we see that the highest level of a label of a
hyperplane of Y! is strictly lower than the level of U;.
So, by induction on the level, there exists ', depending on M! and the HHS constants,
and hence only on « and the HHS constants, such that d(f(a;), f(b;)) < v*.
The base case, where U; is E—minimal in Relys(z,y), follows from the distance formula
and the fact that dy > d.
(In the induction, the constants involve increase in a uniform way at each step, but there
are at most y steps.)
Hence X
d(z,y) < Nv + Nvl,

and we are done. O

Remark 17.2 (Relative HHS version). In [BHS17al, the lemma is proved for relative HHSes,
and the preceding proof works in that case in view of Remark[16.6. In the present paper, we
will only apply the HHS version. O

Remark 17.3. Proposition [I7.1] implies a useful fact supporting the intuition that an HHS
is obtained from products of simpler HHSes — standard product regions — "arranged hy-
perbolically". Indeed, it yields Corollary 2.9 of [BHS17al, which says that, letting S € § be
the E—maximal element, CS is quasi-isometric to the space obtained from X by coning off
the product regions. O

18. HIERARCHY PATHS AND PRODUCT REGIONS

We now briefly discuss how hierarchy paths pass through product regions. Fix an HHS
(X,F) and let x,y € X. Given a constant x, we say that U € § is k—relevant for x,y if
dy(z,y) > k.

The next proposition says that if U is k—relevant, for sufficiently large «, then any hierarchy
path from x to y passes close to Py.
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It also corrects Proposition 5.17 in [BHS19|, which is misstated — see Remark [18.3, which
explains that the appearances of [BHS19, Proposition 5.17] elsewhere in the literature can
be replaced by Proposition [18.1 without further fuss.

Proposition 18.1. For all sufficiently large D (in terms of the HHS constants), there exists
v such that the following holds. Let x,y € X, let v be a (D, D)-hierarchy path from x to vy,
and let U € § be 200D E—relevant for the points x,y. Then v has a subpath 5 such that

o B No(Py), and

e my is v—coarsely constant on any subpath of v disjoint from .

Remark 18.2. One could give a more satisfying proof of Proposition [18.1 using the cubical
approximation, or by using gates, but we give a proof imitating [BHS19] as far as possible. [

Proof of Proposition[18.1l We can assume that v : {0,...,n} — X is a 2D-discrete path,
and write x; = y(7) for 0 < ¢ < n. Hence dy(z;, z;41) < 2DE + E for all i, and each x; lies
D—close to a fixed geodesic vy from 7y (xg) to my(xy,).

Choose 1,7 such that 0 <i < ¢ <n and

e i is minimal with the property that dy(zo,z;) > 10(DE + E);
e i’ is maximal with the property that dy(x;,z,) > 10(DE + E).

Suppose that U & V. Since dy(xo,z;) > 10(DE + E) > E, consistency and bounded
geodesic image demand that pg lies E—close to the geodesic in CV between 7y (zp) and
7y (2;). Similarly, pg lies E—close to the geodesic in CV between 7y (x;) and 7y (x,,). Hence
there exists K(D, E) such that dy (oY, z;) < K(D, E) and dy (oY, ) < K(D, E).

Suppose that UhV. We wish to bound dy (z;, pg) and dy (xy, pg) There are two cases.

e Suppose dy (zg,z,) > E. Then by consistency we have, say, dv(a:o,pg) < FE and
du(xn, p‘U/) < E. Because of our discrete path assumption, we have dy(zg,z;) <
dy(zo,xi—1) + 2DE + E < 12(DE + E). Similarly, dy(zy, z,) < 12(DE + E).

Since dy(zi,20) < 12(DE + E) and dy(wo,py;) > 200DE — 10E, we have
du(zi, pl;) > E, whence by consistency dy (z;, pt}) < E. We also have dy (2, 2,,) >
10(DE + E), so dy(zy, pY;) > E, whence dy (z;,pY) < E. A symmetric argument
works if dy (zy,, pg) < FE, which is the other option provided by the initial application
of consistency.

e Now suppose that dy (zg, z,) < E. Now, since dy(x;, ) = 200DE —2(12(DE+E)),
at least one of 7y (;), 7y (zi11) is E—far from py;, so by consistency, we have that,
say, dv(xi,pg) < E. But dy(z,xy) < 2DE + E, so dv(xi/,pg) < 2DFE + 3E.

So, we have K’ = K'(D, E) so that dy (z;, p}}), dv (zi, o)) < K'(D,E) for VAU or U £ V..
So, letting 1y = k*(K'(D, E)), we have that z;, z;; € N, (Py). By hierarchical quasiconvexity
and the fact that + is a (D, D)-hierarchy path, we can increase v; by a uniformly bounded
amount (depending on D and the HHS constants) to obtain v such that z; € N, (Py) for
i<j<t.

Letting 8 = 7/, we have found v and a subpath § in N, (Py).

By construction, for j < 4, the points 7y (z;,z0) are 10D E-close, and similarly for z;, z,,
when j > #/. Hence 7y is coarsely constant on any subpath of v disjoint from 3. O

Remark 18.3. The places in the literature where the misstated Proposition 5.17 of [BHS19]
is used are:

e In the proof of Lemma 2.8 of [BHS17a]. This was proven independently above, in
Proposition [17.1, using the cubical approximation theorem. Alternatively, the use
of [BHS19, Proposition 5.17] in [BHS17a, Lemma 2.8] can be replaced by Proposi-
tion [18.1.
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e In J[ABD2I]|, the misstated proposition is used, but in each case Proposition m
can be used verbatim since it is only being used to make 7 coarsely constant (the
misstatement in [BHS19] was the unproved assertion that certain other my,V # U,
are coarsely constant).

It is also used in an early version of [RST18|, whose authors have corrected the statement. [

Usually, the following statement about hierarchy paths and product regions is all one really
needs. We will not use it later, so we refer the reader to [RST18| Proposition 4.24] for the
proof.

Proposition 18.4. Let (X,§) be an HHS. Then for all sufficiently large M, there exist
constants v, D such that the following holds. Let x,y € X. Let U € Rely(x,y). Then there
exists a (D, D)—hierarchy path ~y joining x to y such that v has a subpath ( with the following
properties:

[ ) ﬁ C NV(PU),'

e the endpoints of 3 are respectively v—close in X to gy (z),9u(y);

o for any subpath o« of v disjoint from B, and any V E U or VLU, the map my is

v—coarsely constant on .

We use hierarchy paths occasionally later, although we expect most results could be proved
using the cubical approximation of hulls instead. (This parallels the fact that, in a CAT(0)
cube complex, it is often more natural to consider the entire median interval between a pair
of O—cubes, rather than privileging one of the many combinatorial geodesics.)

19. BIGSETS AND ALL THAT

In this subsection, consider an HHS (X,§) and a group G acting on (X,F) by HHS
automorphisms (Definition . Specifically, we recall some notions from [DHS17, Section
6] that will arise later. These pertain to the action of a cyclic subgroup (g) < G on the HHS
structure. We slightly strengthen a special case of Lemma 6.6 of [DHS17]. This statement
will be used in the proof of Lemma 41.44

Lemma 19.1 (Simple projection bounds for stabilisers). Fiz x € X. Let U € § and let
g € Stabg(U). Then for all V € § such that VAU or U =V, we have

diam(ﬂv(<g> : $)) < Bauta

where Byt = Baut(z,U) is a constant depending on the HHS structure, the element U, and
the point x, but not on g.

Proof. Let Py be the standard product region associated to U and let g7 : X — Py be the
gate map. Let Dy = dy(z,gu(x)). Recall that my is (E, E)—coarsely lipschitz for all V.
Suppose that VAU or U = V, so that pg is defined and bounded. Then by the definition of
the gate map to Py, we have dv(:c,p‘U/) < EDgy + E + r*(0).

Now, for all n € Z, we have ¢ "V AU or U = g~ "V, since G acts on § preserving the
relations =, 1, h and gU = U. So, as above, we have

dg-ny(z, ,ogU,nV) < EDg + E + £™(0).

Applying the isometry ¢g" : Cg~"V — CV, we get dy(g"z, p¥) < EDy + E + £*(0). So
diamey (my({g) - x)) is bounded in terms of Dy and the HHS constants (x> (0) depends only
on the HHS constants). Since Dy depends only on x and U, we are done. ]

Recall from [DHS17, Section 6] that the bigset of g € G is the set of U € § such
that 77 ((g) - ) is unbounded in CU (for some, and hence any, € X’). Lemmas 6.3 and
6.7 of [DHS17| show that Big(g) consists of pairwise orthogonal elements and hence has
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cardinality at most y, and each element of Big(g) is thus stabilised by a uniformly bounded
positive power of g.

The following lemma combines (and slightly strengthens) Proposition 6.4 and Lemma
6.6 of [DHS17]. We repeat the proof for self-containment. This statement will be used in
Section The proof is essentially the same as in [DHS17]; we explain the extra observation
needed for the slight strengthening. We also explain how Proposition [17.1 is used. Some
details that are exactly the same as in [DHS17| are omitted.

Lemma 19.2. Let z € X and g € G. Let U € Big(g). Then there exist constants B =
Bg“(x,U, g) and B¢t = B{“(x,U,g) such that the following hold:

o diam(my ({g) - z)) < B3“* whenever U =V or UAV.
e diam(my ({g) - x)) < B¥* whenever V. U or VLU and V ¢ Big(g).

Moreover, if g fires U (for example if elements of § are not orthogonal to their g—translates),
then B§“* can be taken to be independent of g.

Finally, if Big(g) = &, then {g) has bounded orbits in X, and the second item above holds
forallV e g.

Proof. Since U is stabilised by a uniformly bounded power of g, Lemma implies both
the first item and the "moreover" clause.

Let {Uy,...,Ux} = Big(g) (say, U = U;), which is a pairwise-orthogonal set of elements
of § invariant under (g). Let ¥ be the set of V' € § such that either V' = U; for some i, or
V LU; for all 3.

Note that by the first item, it suffices to bound the diameter of my((g) - z) for V e T. By
passing to a uniform power, we can assume that (g) fixes each U;. Now, if the unique =—
maximal S € § is not in Big(g), then §y, has strictly lower complexity than §. Considering
the action of (¢) on (Fy,,Sv,) by HHS automorphisms (see [DHS20, Section 2| for a precise
description of how to make {(g) act on Fy;,), we have by induction on complexity a bound on
the diameter of my ({g) - z) for V & U;. In the base case, §y, = {U;} and the bound holds
vacuously.

Hence the desired conclusion holds for all V' = U; and all ¢, unless Big(g) = {S}.

Let T be the set of V such that V' = U, for some 7. Since T’ is (g)—invariant and downward-
closed, Proposition@provides an HHS (XA ,§—%') where g is an HHS automorphism. (The
action on X is the same as the original action on X', but it might now be an action by uniform
quasi-isometries instead of isometries. This does not affect the remainder of the argument,
since the only genuine isometries needed are at the level of the maps g : CU — CgU, and
these have not changed.)

In other words, we are considering an action of g on an HHS structure where the bigset
of g is empty. Proposition 6.4 of [DHS17| implies that (g) has bounded orbits in X" in this
case, and hence (g) -z has uniformly bounded projections to CV (i.e. the bound depends on
g,x but not V') in this case.

To conclude, we need to prove the second item in the statement in the case where Big(g) =
{S}. This is essentially a bounded geodesic image argument, and we refer the reader to the
last two paragraphs of the proof of Lemma 6.6 in [DHS17|. O

Remark 19.3. In our applications, we have an HHG (G, §), an element U € § such that
Py is at bounded distance in G to 1 (bounded independently of U), and g € Stabg(U).
Lemma [19.1 shows that diam(my ({g))) < B§*, where B§* is independent of g and depends
on U to the extent that it depends on dg(1, Py), as long as U = V or VAU.

If U € Big(g), then the diameter of the projection of (g) to CV is bounded in terms of g
when V & U by Lemma [19.2.
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Finally, in practice, the diameter of the projection of {g) to elements orthogonal to U
will often be bounded through additional assumptions on ¢ arising from extra algebraic
information about G. O

20. © DISCRETE REAL CUBINGS AND HIERARCHICAL HYPERBOLICITY

This section is unnecessary for either the subsequent applications to asymptotic cones, or
for an understanding of real cubings or hierarchically hyperbolic spaces.

The goal is to relate conditions in [BHS17b, [HS20] guaranteeing that a CAT(0) cube
complex is a hierarchically hyperbolic space to finite depth of the orthogonal poset-colouring
(and hence to "interesting" real cubing structures on the cube complex).

Recall that a real cubing (X,§") is discrete if each T*W, W € §" is a simplicial tree, and
p¥v is a vertex of T*W whenever it is defined and a single point.

In Theorem [4.16, we have proven that every discrete real cubing is median-preservingly,
(1—-isometric to a finite-dimensional CAT(0) cube complex and conversely, every finite-
dimensional CAT(0) cube complex is median-preservingly ¢;—isometric to a discrete real
cubing.

This theorem is not much more informative than the fact that any CAT(0) cube complex
is an isometrically embedded median subspace of an (infinite) cube. In the rest of the
section, we show that one gets a more useful real cubing structure on X when the orthogonal
poset-colouring of the hyperplanes in X has finite depth, and we relate this to conditions
in [BHS17b| ensuring that X is a hierarchically hyperbolic space.

20.1. © Factor systems. Fix a CAT(0) cube complex X. We recall the following definition
from [HS20|, see also [BHS17b] Section 8|:

Definition 20.1 (Hyperclosure, factor system, weak factor system). Let 1 be the smallest
collection of convex subcomplexes of X satisfying the following conditions:

L4 Xeﬁlv

e cach combinatorial hyperplane is in $; (recall that if hisa hyperplane the union of
1

the closed cubes intersecting h is a cube complex isomorphic to h x [—%, 5], and a
combinatorial hyperplane is a subcomplex of the form h x {i§}),
o if F, F' € $1, then gp(F’) € 1, where gp : X — F is the gate map;
e if F e $y and F’ is a subcomplex parallel to F, then F’ € §;.
We let $ be the set of parallelism classes of subcomplexes in ;. The set £7 is called the
hyperclosure . Any set of subcomplexes that is closed under parallelism and gates in the
preceding sense, and contains §)1, is called a candidate factor system.
If $; is a uniformly locally finite collection of subcomplexes (every point is contained in
boundedly many elements of §)), then ) is a factor system.
If $) has the property that there exists IV < oo such that N bounds the lengths of chains

in the partial ordering of £ by inclusion, then $) is a weak factor system. O

The original intent of the definition of a factor system in [BHS17b| was to provide an HHS
structure on X. See [BHS17bl Remark 13.2].

Specifically, given parallelism classes [F],[F’] € $), where ) is a candidate factor system,
we write:

e [F] T [F'] (nested) if representatives F, F’ of the parallelism classes can be chosen
so that F' € F’; equivalently, for any representatives F, F’ of the given parallelism
classes, I is parallel to a subcomplex of F’;

e [F]L[F'] (orthogonal) if the representatives F, F’ can be chosen so that the inclusions
F,F' — X extend to a convex embedding F' x F' — X;
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o [F]A[F’] (transverse) otherwise.

From the definitions, we immediately get:

Lemma 20.2. FEvery factor system is a weak factor system. If $) is a weak factor system,
then the partially ordered set ($),Z) has a uniform bound on the length of chains.

Moreover:

Lemma 20.3. Let X be a CAT(0) cube complex and let $) be a weak factor system, and let
N be the bound on the length of =—chains. Then X is finite-dimensional and there exists
M < o such that if [F1],...,[Fm] € 9 are pairwise orthogonal, then m < M.

Proof. We first verify finite dimension. If c¢is a d—cube in X, then each (dim c—k)—dimensional
face of ¢ is contained in a codimension—k combinatorial hyperplane, which necessarily belongs
to $1, and we obtain a E—chain of length d. So the dimension is bounded in terms of N.

Let [Fi],...,[Fm] be pairwise-orthogonal. Then by induction on m, one can choose
I, ..., F,, representing the given parallelism classes, such that F; — X extends to a convex
embedding F} x --- x F,, — X. (Indeed, by induction, we have P = F} x --- x Fp,_,
and every hyperplane crossing P crosses every hyperplane crossing F,,, by the definition of
orthogonality. Now apply Proposition @)

At most one of the Fj is a single point (there is only one parallelism class of vertices), so
without loss of generality, none is. Thus P is contained in a combinatorial hyperplane H,
and the set 7 of elements of §) nested in H is a weak factor system on H with E—chains
bounded by N — 1, where N is the bound for ), since H © X. By induction on N, there
exists M’ such that pairwise-orthogonal subsets of £y have cardinality at most M’, so since
Fi,...,F,_1 & H, we have m — 1 < M’ and hence m < M’ + 1. So, in fact, M < N
suffices. O

Observe that if [F],[F'] € $, where $) is any weak factor system, then [gr(F’)] € $ has
the property that [F”] = [F], [F'] implies that [F"] € [gr(F")]. So $ automatically has the
wedge property.

Now, if F € 1, then there is a maximal convex subcomplex FL of X, unique up to
parallelism, such that F — X extends to F' x F+ «— X. If F, F; are parallel, then so are
F+, Fll If §) is a weak factor system with the property that F- € $; whenever F € £, then
$ is a weak factor system with clean containers.

In [BHS17b]|, the authors work with factor systems, but one could achieve the same with
weak factor systems:

Proposition 20.4. Let X be a CAT(0) cube complex with a weak factor system $). Then
(X, 9) is a hierarchically hyperbolic space, where the hyperbolic spaces CF,F € $ and 7p :
X — CF are as in [BHS17b, Remark 13.2| (and in particular are uniformly quasi-isometric
to trees). Moreover, this HHS structure has wedges in the sense of Deﬁm’tion and, if $
has clean containers, then the HHS has clean containers in the sense of Definition|35.3

Proof. Remark 13.2 of [BHS17b] provides the desired hierarchically hyperbolic structure when
$ is a factor system. We first remark that when X is a uniformly locally finite CAT(0) cube
complex — equivalently, every vertex is contained in at most d hyperplane carriers for some
d < o0 — then any weak factor system is actually a factor system, and we are done. This can
be seen from the fact that £, is closed under taking intersections of subcomplexes (because
gr(F") = F n F’ when the latter is nonempty) and a pigeonhole argument. One then bounds
the number of elements of £); that contain a given vertex in terms of d and the length N of
a longest E—chain in $;.
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When X is not uniformly locally finite, we instead check directly the HHS axioms from
Definition [10.1 below (see also Definition 1.1 in [BHS19|, which is an equivalent formulation
of the definition of an HHS from [BHS17h]).

Axioms (1)-(4) follow exactly as in [BHS17b, Remark 13.2] — the arguments do not use
local finiteness of the factor system. Axiom (5) simply asserts that the length of =—chains
is bounded, which is part of the definition of a weak factor system. Axiom (6) (large links)
is [BHS17b! Proposition 9.4] and Axiom (7) (bounded geodesic image) follows from [BHS17bl
Proposition 8.20], neither of which use local finiteness.

Axiom (9) (uniqueness) follows from the stronger distance formula, which is Theorem 9.1
in [BHS17b]. This is proved by induction on the multiplicity of $);, so it uses local finiteness,
but the induction goes through with no significant change if one inducts instead on the
maximal length of a ©—chain, observing that if F' € £, then the set of F’ € $); that are
parallel to subcomplexes of F' forms a weak factor system in F' in which chains have length
bounded by N — 1, where N is the bound for $;.

Finally, Axiom (8) (partial realisation) follows from [BHS17b, Theorem 12.4]. Again, in
the proof of the latter theorem, one must replace an induction on multiplicity by an induction
on the length of E—chains exactly as for Axiom (9). One can also verify partial realisation
directly from the construction. Let F1, ..., F, € 1 be pairwise orthogonal. By the definition
of orthogonality and the Helly property for convex subcomplexes, we can choose the F; in
their parallelism classes so that the convex hull of their union is a convex subcomplex of the
form Fy x --- x F,. Choose a point z; in the factored contact graph CF; for each ¢. This
amounts to choosing, for each i, a hyperplane h; crossing F;. These hyperplanes pairwise
cross, and hence mutually intersect in a point y € F} x --- x F),. By construction, y projects
uniformly close to x; in CFj, for each ¢, and the definition of the points pgi (for U €

for which pgi is defined) from [BHS17b| now shows that y is the desired partial realisation
point. O

20.2. © Orthogonal poset-colouring and factor systems. Parallel convex subcomplexes
cross the same walls, and by the next lemma, this amounts to saying that they cross the
same hyperplanes. Since we are working with convex subcomplexes, which correspond in
the natural way to median-convex subsets of the vertex set of X, we will use the terms
"hyperplane" and "wall" interchangeably in this section.

Lemma 20.5 (Walls in a cube complex). Let w = {w,w*} be a wall in the CAT(0) cube

complex X. Then there is a unique hyperplane h such that the partition of X© induced by h
is {w(®), X(0) (0},

Proof. Let z € w,y € w* be vertices. Let v be a path in X! joining z to y. Then v must
have an edge with one endpoint in w and one endpoint in w*, so we can assume that x,y are
the endpoints of some edge e.

Let h be the hyperplane dual to e. Let h,h* be the halfspaces associated to h and
containing x,y respectively. So, h separates z,y. On the other hand, W separates x,y. Now
note that in e(?), there is a unique wall separating z,y, so by Lemma @, there is a unique
wall in X separating x,y, so h = w and h* = w*. O

Finally, let § be the set of colours used in the canonical orthogonal poset-colouring of the
median space X (). Recall the construction of § from Section :

e start with the set SE) consisting of all non-empty sets of hyperplanes of the form
(Nie; W(hi), where h; is a hyperplane and W(h;) is the set of hyperplanes crossing it;
we include W;
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o let %1 c 3’6 consist of W, together with any U € S(.) that is orthogonal to some subset
Ve 3(') (i.e. every hyperplane in U crosses every hyperplane in V);

e finally, let § be the set containing the inclusion-maximal element of each equivalence
class in 31, where U and V are equivalent if they are orthogonal to the same elements
of F7.

The map Col : W — F takes each hyperplane 1 to the set Col(w) of hyperplanes that
cross all hyperplanes crossing w (so e.g. w € Col(w)).

We now relate finite depth of the orthogonal poset-colouring of X to the existence of a
weak factor system (with wedges and clean containers).

Theorem 20.6. Let X be a CAT(0) cube complex. Suppose that the orthogonal poset-
colouring Col : W — § has finite depth. Then X has a weak factor system $) with wedges
and clean containers. Hence (X, $) is a hierarchically hyperbolic space with wedges and clean
containers, and (X, §") is a real cubing with wedges and clean containers.

Conwversely, suppose that X admits a weak factor system $3. Then § has finite depth, and
hence X admits a weak factor system with wedges and clean containers.

Thus, in particular, X has a weak factor system if and only if it has a weak factor system
with wedges and clean containers.

Two remarks before proving the theorem:

Remark 20.7. The converse direction of Theorem@strengthens a result in [HS20, Propo-
sition 5.1, which shows that a CAT(0) cube complex with a factor system and a proper co-
compact group action admits a factor system with clean containers (and, as remarked above,
the wedge property is automatic because we can take gates). A careful look at the argument
in [HS20] reveals, however, that the group action isn’t used for clean containers if one already
knows the hyperclosure is a factor system. O

Remark 20.8. The hierarchically hyperbolic structure (X, $)) and the R—cubing structure
(X, ") are closely related, but with important differences. For example, if X is the universal
cover of the wedge of two tori with the usual cubical structure, then the E-maximal element
of $ is X, and the associated hyperbolic space is CX, which is quasi-isometric to the Bass-
Serre tree of the free product splitting of Z?*Z?2. On the other hand, the =-maximal element
of § is W, and the associated real tree is a single point, by the construction in the proof
of Theorem because every wall crosses one of the constituent flats of X, and hence has
properly nested colour. Now, for any z,y € X, the quantities

> derry(,y)
[Fles

and

Z dT'U(‘ray)

Ueg®
differ by a bounded multiplicative and additive error, in view of Theorem [10.7 and Def-
inition , which relate these quantities to dx(z,y). The reader can resolve cognitive
dissonance by noting that, to travel in X in a way that makes progress in the Bass-Serre tree,
one must cross walls, and hence accumulate distance in the various real trees 7°U. If we
replaced the wedge of two tori by a pair of tori joined by an edge, the universal cover would
be a quasi-isometric CAT(0) cube complex X’. The HHS structure will not have changed,
but the E—maximal R—tree in the real cubing structure will now be a copy of the Bass-Serre
tree. ]

Proof of Theorem[20.6. Suppose that Col : W — §" has finite depth. Let Ue § .
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Claim 14. There is a finite set iLl,...,hn such that the ~-class U is represented by
" W(h;), and this set is maximal in the ~—class. Moreover, n is bounded by the depth
of the orthogonal poset-colouring.

This set is empty if and only if U € § is the unique =-maximal element.

Proof of Claim|[14. Let U = (¢, W(ﬁl) be a set in g, representing the ~—class U. Then U
is also represented by the maximal element (U/)*.

In fact, U = (U*)*. Indeed, we have Ut = (), W(w). Every wall @ € U crosses every
wall in U+, by definition, so U = (U+)*. On the other hand, if € (U*)*, then @ crosses
every wall in ¢+, In particular, @ crosses every Bi, soweU.

So, in view of Lemma [3.23] we can take U to be the E—maximal representative of the
~—class U.

Let (I,)n>0 be a sequence of finite subsets of I with I,, < I,,41 for all n. Let U,, € 36 be
given by

Un = [ W(hy).
i€l

So, we have U, 2 U,+1 2 U for all n = 0. As above, U,, is maximal in its ~—class. So, if
the sequence (Uy,)n=0 fails to stabilise, finite depth of (§°,Z) is contradicted.

Hence there exists N such that n > N implies U,, = Uy . This completes the proof. 0

Claim 15. For each h; as in Claim let H; be one of the combinatorial hyperplanes
bounding the carrier of h;. Let

Fy = an(an71(' ) 'ng(Hl)) o )

Then Fy is well-defined up to parallelism (independent of the choice of the h; satisfying
the conclusion of Claim [14] and independent of their order).

Proof of Claim[15. From the definition of Fy, we get
W(Fg) = (YW (h),
i=1

which is the unique maximal element of the ~—class U. Since this element is independent of
the h;, the same is true of W(Fy), so Fy is uniquely determined up to parallelism. O

We now verify that the set H; of convex subcomplexes parallel to some element of {Fy :
U € §'} is a candidate factor system and that the quotient # of #H; by the parallelism
relation is a weak factor system with clean containers (wedges are automatic, as mentioned
above).

Indeed, X = Fg, where S is the ~—class of the entire set VW of walls (the E—maximal
element of ). If I/ € $1, then the same is true for any subcomplex parallel to F, by
definition of H;. By construction, each combinatorial hyperplane H has the form Fy, where
U= W(ﬁ), where h is the hyperplane whose carrier contains H as a bounding copy of h. If
F,F' € Hy, then, up to parallelism, we can write F = Fy, F' = Fy:. Then g (F) = Fy.u'-
This shows that H; is a candidate factor system, and the fact that H; is a weak factor system
now follows from finite depth. Indeed, if Fy, < --- < Fy,,, then U; = --- = U,,.

From Proposition we thus get the claimed HHS structure (X, ).

Conversely, suppose that £; is a candidate factor system such that $) is a weak factor
system. Then we can assume that $; is the hyperclosure, since a sub-weak factor system
of a weak factor system is a weak factor system, by the definitions. We now check that the
orthogonal poset-colouring Col : W — § has finite depth. The first part of the theorem
then shows that X has a weak factor system with wedges and clean containers.
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Suppose that the orthogonal poset-colouring has infinite depth. Let S}m c § be the set

of U represented by sets of walls of the form U = (),_; W(h;) with J finite. If there is a
bound on the length of &—chains in 3}1‘71’ then we obtain a corresponding bound in § . So,

we can assume that for any n > 0, S}m contains a chain U; Z— Uy T --- & U,.

But for each Uj;, we can construct Fy, € $1 as above, and thus obtain a length-n chain
of proper inclusions (up to parallelism) in $);. For sufficiently large n, this contradicts that
the latter is a weak factor system. Hence the orthogonal poset-colouring has finite depth.

In the situation where the depth of the orthogonal poset-colouring is finite, the weak factor
system $); has wedges (the wedge of Fy, Fv is gr,(Fv)). The clean containers property
follows since X contains a convex product region Fy x Fyy1 for each U, and ULV is equivalent
to V = U is equivalent to the existence of a convex product region Fyy x Fy.

(Somewhat more precisely, let U € & and let Fiy be as above, so that the walls crossing
Fy are exactly those in the set U = ﬂle W(ﬁz) Let F be the maximal convex subcomplex
such that Fy lies, up to parallelism, in a convex product region Fyy x F*. Then the set
of walls crossing F- is exactly the set of walls @ such that @ crosses all walls crossing Fys,
i.e. w crosses all elements of . In other words, W(F+) = (), W(%). Apply Claim
to the latter set, so that we can construct Fyyp1) as an element of §);. Then observe that
Fyypy = F*)

This completes the proof. O

Remark 20.9. The preceding theorem does not quite characterise those CAT(0) cube com-
plexes that are hierarchically hyperbolic spaces in terms of finite depth of the orthogonal
poset-colouring, because X can admit hierarchically hyperbolic structures different from the
on from Proposition [20.4] This is true even if we restrict to hierarchically hyperbolic struc-
tures giving rise to a coarse median operator (see Section compatible with the median
coming from the cubical structure.

For example, any hyperbolic CAT(0) cube complex is an HHS in a trivial way, by virtue of
being hyperbolic — but any hyperbolic CAT(0) cube complex also admits a factor system. [

21. © QUESTIONS AND REMARKS

21.1. © Characterisation of CAT(0) cube complexes that admit an HHS structure.
In Theorem we provided sufficient conditions for a CAT(0) cube complex to admit an
HHS structure, namely existence of a weak factor system or equivalently, an orthogonal
poset-colouring of finite depth. However, this is not a necessary condition in general.

The following is an example of a CAT(0) cube complex which admits an HHS structure
but does not admit a weak factor system (i.e. the orthogonal poset-colouring has infinite
depth).

Example 21.1 (Infinite-depth cube complex with an HHS structure). Let X be the CAT(0)
cube complex defined as follows. For i € N, let s; and t; be the segments [0, ] and [0, j].
For all ¢+ € N consider the product P; = s; x St; where St; is the star formed from the
segments t1,...,t;, i.e. the quotient of the union of the segments t1, ..., t; by identifying the
point 0 in all the segments #q,...,¢;.
Then X is obtained as the quotient of the union of P;, ¢ € N after identifying the copies
of the segments {0} x t; in the pieces P;, j <ieN.
Let § be the set § = {U;, V;,U,V,S | i € N} with the following relations:
U; LV; for all i e N and j < 4;
U, U for all i e N;
VeV forallieN;
U, V;, U,V £ S for all i € N;
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e otherwise the elements are transverse.

52
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1
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FIGURE 21. First three steps of the construction of X

We associate to U; and V; a segment [0,4] and to U, V, S a point. We identify the segments
with s; and t; in X respectively. Then the map 7 is defined as the closest point projection.

For U,V € §, if p% is defined, we defined it as p% = 0.

One can check that (X, §) is an HHS structure.

However, the orthogonal poset-colouring has infinite depth. Indeed let V; be the set of
walls that cross s; and U] the set of walls that cross each wall in V;. Then since each wall that
crosses s; also crosses s; for all j > 4, from the construction of the orthogonal poset-colouring,
we have that U} £ Uj for all j > i and i € N. Therefore, the depth is infinite. O

The key reason that allows X to admit an HHS structure but not a factor system, is the
fact that each point in X and the basepoint 0 have at most two different projections in the
segments associated to the index set, i.e. their projections differ in at most one segment
associated to U; © € N and one associated to V;: for all x € X, there exists a unique s; and
t; such that 7, (v) # m,,(0) and 7, (z) # 7;(0). In other words, there are infinitely many
transverse elements in the index set but the "partially ordered chains" determined by pairs
of points have bounded length.

This motivates:

Question 21.2. Is the following true?

The CAT(0) cube complex X admits an HHS structure (inducing a coarse median at
bounded distance from the median coming from the cubical structure) if and only if, for
any infinite E-chain in the canonical orthogonal system, there exists W in the chain and
N = N(W) such that for all pairs of points in Fy, the number of E—maximal elements on
which the projections of the two points differ (by more than a bounded amount) is bounded
by N.

We believe that, for locally finite cube complexes admitting proper cocompact group ac-
tions, one may be able to make an argument based on the passing-up lemma (Lemma
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to show that essentially any HHS structure must come from a factor system, i.e. from the
orthogonal poset-colouring:

Question 21.3. Let X be a locally finite CAT(0) cube complex that admits a proper co-
compact action of a (necessarily finitely generated) group. Is it true that X admits an HHS
structure if and only if X has a finite depth orthogonal poset-colouring if and only if X has
a weak factor system?

The related question — whether every locally finite CAT(0) cube complex admitting a
proper cocompact group action has a factor system — was first posed in [BHS17b| and was
studied in [HS20]. At present, all proper cocompact CAT(0) cube complexes of which we are
aware have factor systems, and the question seems quite difficult. Hence it might be useful
to consider Question [21.3, which is easier in principle because it allows one to assume there
is some HHS structure.

The following example (of a CAT(0) cube complex with a proper cocompact group action
and no weak factor system — and, it seems, no HHG structure) illustrates why one should
assume local finiteness in the question from [BHS17b] and hence in the easier version stated
above:

Example 21.4 (Infinitely generated cubical group which is not an HHG). The universal
cover of the Salvetti complex of an infinitely generated RAAG G constructed below is a
locally infinite CAT(0) cube complex (the 1-skeleton is a median graph), but this RAAG is
not an HHG. Note that the Salvetti complex of G is two-dimensional.

Let G be defined by the following presentation. Let A = {a;}ien and B = {b;}ien. Let

G =(A,B| a;,bj] =1fori>k,j <k, for all k).

Since G is the vertex set of the universal cover of the Salvetti complex, it is a (discrete) median
metric space. But the hyperclosure construction does not yield an HHG structure, since the
finite complexity axiom would be violated. By considering standard product regions, it seems
that in fact there is no HHG structure on G that coarsely induces the median associated to
the cubical structure of the Salvetti complex. U

Relatedly, it would be interesting to answer the following question:

Question 21.5. Is there a locally finite CAT(0) cube complex which admits an HHS struc-
ture but not a weak factor system? The HHS structure should induce a coarse median that
is bounded distance from the median coming from the cubical structure. (Otherwise, simple
"staircase" constructions provide examples of cube complexes with no factor system that are
nonetheless HHS because they are quasi-isometric to [0,00) x [0, 0).)

21.2. © Characterisation of real cubings that admit an HHS structure. In Theorem
@, we provided a sufficient condition for a CAT(0) cube complex to admit an HHS struc-
ture, namely to have a weak factor system or equivalently, an orthogonal poset-colouring of
finite depth.

We believe that the proof for CAT(0) cube complexes can be generalised to real cubings.
Namely, if a real cubing has a poset-colouring of finite depth, then it admits a structure of
HHS. Recall that having a poset-colouring of finite depth is equivalent to have an index set
with clean containers. More precisely, we formulate the following question:

Question 21.6. Let (X, S) be a real cubing with finite depth orthogonal poset-colouring.
Does there exists an index set §’ such that (X,§) is an HHS, with the associated coarse
median at bounded distance from the median coming from the real cubing structure?
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Without loss of generality, one can assume that § is the index set defined by the finite
depth orthogonal poset-colouring, see Section In particular, the index set has wedges,
joins, clean containers and a maximal =—element.

Notice that with this index set, (X,§") is not an HHS since it may fail the uniqueness
axiom. Indeed, one can consider Example with the orthogonal index set. The tree
associated to the maximal element is a point and so there are points at distance as large as
we want in the space whose projection are small in all the trees. Take for instance 1 and the
element (abc)™ - the points are at distance 3n but all the projection into trees of the index
set are at distance at most 1.

In order to construct the trees given the orthogonal poset-colouring of walls, we consider
the subspace Fy, define a pseudo-metric on it and quotiented the space to obtain a metric
space which we prove to be a real tree. Instead of that approach, one needs to follow the HHS
structure on a CAT(0) cube complex and consider the analog of the contact graph associated
to Fy, i.e. one needs to cone—off some product regions and obtain a hyperbolic space.

More precisely, given a colour U (a subset of walls), let CyU have a vertex for each wall
whose colour is nested in U, with adjacency of two walls if the fio-measure of the halfspaces
separating them is at most some global constant. Let wy, w, be two walls. Let wy, wo, ..., w,
be a path in CoU joining them. Let v be any wall separating wy, w,, (necessarily the colour
of v is nested in U, so it is a vertex of CoU). Then some w; has to come close in X to v, and
hence close in CyU.

The idea is that some stronger version of Manning’s Bottleneck Criterion [Man05| should
imply that CoU is a quasi-tree, as for cube complexes in [Hagl4].

Now, CU is obtained from CyU by coning off each CyV with V nested in U. An argument
like the above used for CAT(0) cube complexes should show that these subgraphs are quasi-
convex in CoU. Then general facts about quasi-trees should show that the cone-off is still a
quasi-tree.

In order to prove uniqueness, one can try to use the finite complexity and the arguments
to prove the distance formula (which implies uniqueness) from [BHS17b|. The real cubing
structure should help to verify the partial realisation axiom.

Part 3. Real cubing structures on asymptotic cones

In this part, we first briefly recall the definition of an asymptotic cone. The main work,
starting in Section is to prove that, given a hierarchically hyperbolic space, every asymp-
totic cone is bilipschitz equivalent to an R—cubing. This R—cubing depends, a priori, on the
choices inherent in the asymptotic cone (ultrafilter, rescaling, and in the absence of a proper
cobounded group action, observation point). This generalises and strengthens some of the
results about the mapping class group in [BDS11bl [BDS11a].

The strategy is to first appeal to a result of Bowditch to find a complete, connected,
finite rank median space bilipschitz equivalent to the asymptotic cone, and then use the
hierarchically hyperbolic structure to find a finite-depth poset-colouring of the walls in this
median space, satisfying the tangible filter condition. Then we will apply Theorem[5.1] Using
information specific to the cone, we will relate the real cubing data (the index set, nesting,
orthogonality) to the hierarchically hyperbolic space data, without having to mention the
colouring in our final statement.

In the asymptotic cone, there are "product regions" that are ultralimits of standard prod-
uct regions in the hierarchically hyperbolic space, and the real trees in the real cubing struc-
ture are obtained by collapsing these product regions.

The chain of events is different from that in [BDS11b|: they produce their R—trees without
reference to a median on the asymptotic cone, embed the asymptotic cone in the product
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of the R—trees, and restrict the median. We start with a median on the asymptotic cone,
provided by a theorem of Bowditch [Bowl8b|, and work with this to build the R-trees and
verify the R—cubing axioms from Definition (via Theorem [5.1)).

We also consider the special case where the underlying hyperbolic space is the Cayley
graph of a hierarchically hyperbolic group G. Here, we discuss how the ultrapower of G acts
by automorphisms on the R—cubing structure of the asymptotic cone. In order to extract an
action by genuine automorphisms (rather than by K—automorphisms for some K possibly
greater than 1), we need to appeal to a variant of Bowditch’s theorem, due to Zeidler |Zeil6].

Having done this, we discuss the local structure of the asymptotic cone of G. Specifically,
we consider the grove at each point (as in Section . Although the R—trees in the R—cubing
structure are not in general complete, it turns out that the local R—cubing at each point of
the asymptotic cone of G has image in each R—tree a subtree isometric to either a point, a
line, or the universal 2%0—tree defined in [DP01]. This will play an important role in Part

22. ASYMPTOTIC CONES

We briefly review asymptotic cones, referring the reader to [DKI18| for a comprehensive
discussion.

Let (X,d) be a metric space and let w be a non-principal ultrafilter on N. Let (p,), be a
sequence of points in X’ and let (j,,)n be a scaling sequence of positive integers with jy, 5 0.

The sequence (z,,), in X is admissible if d(xzy,, pp)/jn is bounded w—-almost everywhere
in N. Observe that if x = (2,),y = (y,) are admissible, then the sequence d(xy,yn)/jn is
bounded and hence the w-limit limy, d(zpn, Yn)/jn = dos(x,y) exists.

Declare x,y to be equivalent — written x ~ y — if aoo(x, y) = 0. A sequence x is negligible
if x ~ p, where p = (p,). A sequence x is admissible if aoo(x, p) < 0. We let X, denote
the set of admissible sequences.

The asymptotic cone of X with respect to w,(pn), and (j,) is the metric space
(Conew(X)@) where Cone®(X) = X%/ ~, with metric du; it is easy to verify this is
well-defined and is a metric on Cone” (X).

In the case where X is a (locally finite Cayley graph of a) finitely-generated group G with
a word-metric, it can be shown that the asymptotic cone is independent of the choice of
basepoint p.

It is shown in [vdDWS84] that asymptotic cones of metric spaces are always complete.
Similarly, if (), ), is a sequence of subspaces of X, then the ultralimit of the ), is a closed
subspace of Cone”(X) (provided it is at finite distance from the observation point). We will
use these facts freely below.

In our applications, X will always be a (D, D)—quasigeodesic space, for some fixed D.
Hence, any two points in any asymptotic cone of X can be joined by a D-bilipschitz path.
Moreover, in many applications, X will be a Cayley graph, so asymptotic cones will be
geodesic spaces [DK18| Corollary 7.67].

We will often be interested in the situation where X = G, a finitely generated group
equipped with the word metric d. Letting denote the set of w—equivalence classes of
sequences in GG, we have that G* is a group with multiplication defined termwise on repre-
sentative sequences.

Given an admissible sequence (), in G, and an element (g,,) € G*, the sequence (g,xn)n
is admissible with respect to the translated basepoint (g,0,)n, Where (0,), is the original
basepoint.

So, we can think of (g,,) as an isometry Cone®(G)(,,) — Cone”(G)(40,). We usually just
care about the subgroup < G* of admissible sequences, which then acts by isometries
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on Cone”(G). There is a further subgroup < Guq consisting of negligible sequences,
defined as above for the given observation point.

When considering asymptotic cones of groups, we always put the basepoint at the point 1
represented by the constant sequence whose terms are all 1 € G. There is no loss of generality
in doing this since, as mentioned above, every asymptotic cone of G is naturally isometric to
an asymptotic cone based at 1, see e.g. [DK18, Exercise 7.65].

23. MEDIAN METRIC ON THE ASYMPTOTIC CONE OF AN HHS

Fix an HHS (X,§). Our proof that the asymptotic cones of X are bilipschitz homeo-
morphic to R—cubings will take as an input the fact that the asymptotic cone is bilipschitz
homeomorphic to a median metric space, where the median comes from the coarse median
on X. This fact is due to Bowditch, and we elaborate on it in this section. In order to
accommodate isometries of the asymptotic cone, we will also use a variant of the result, due
to Zeidler. The results of Bowditch and Zeidler work for finite-rank coarse median spaces —
a more general class than HHSes — and we will see that their results apply in our setting
due to facts from Section [12] and Section [16]

Throughout the section, let w be a non-principal ultrafilter on N, and let (j,), be an
increasing sequence of natural numbers. Let (0,), be a sequence of observation points in X.
Let Cone”(X') be the asymptotic cone of X determined by the observation point (op)n, the
scaling sequence (j,), and the ultrafilter w.

23.1. The median algebra structure on Cone”(X). Let x,y,z be points in Cone“(X)
represented by admissible sequences (Zp,)n, (Yn)n, (2n)n respectively. For each n, let m,, =
1(Zny Yn, 2n) be their coarse median. Since dy(my,,0,) can be bounded in terms of the
distances from o, to X, Yn, zn, admissibility of (x,)n, (Yn)n, (2n)n imply admissibility of
(mn)n. Thus (my,), represents some point [pfx,y, z) € Cone® (X).

The function p : Cone?(X)? — Cone¥(X) makes Cone®(X) into a topological median
algebra, by [Bow13, Proposition 9.1].

This does not mean that Cone“(X'), equipped with the metric aoo and the median u, is
a median metric space. In the next subsection, we see how Bowditch adapts aoo within its
bilipschitz class to make it a median metric, without changing p.

23.2. Bilipschitz median metrics. We now modify éloo to a median metric. The first step
is to bound the coarse median rank of X', dxy, u).

Lemma 23.1. Letting p1 be the coarse median from Section [12, the coarse median space
(X,dx, 1) has rank at most x, the HHS complexity.

Proof. Let A c X be a set with |A| < co. Proposition @ provides a constant C', depending
on the HHS constants and on |A|, but not on the specific points in A, such that there is
a finite CAT(0) cube complex Y and a C—quasimedian, (C,C)—quasi-isometric embedding
f Y — X whose image is C—Hausdorff close to Hy(A). Hence the finite median algebra,
the map f, and the quasi-inverse f : Hg(A) — Y satisfy Condition (C2) from the definition
of a coarse median space [Bowl3, p. 4]. Moreover, dimY < x by Proposition @ So, by
the definition of the rank of a coarse median space [Bow13, p. 4], the coarse median rank of
X is at most . ]

From Lemma|23.1 and [Bow13, Proposition 9.3, the metric space (Cone® X, aoo), equipped
with the median p, is a topological median algebra of rank at most .

Lemma 23.2. There ezists ko such that for all x,y,z,w € Cone”(X),
dCone“’ (X) (N(Xa Y, Z), /J,(X, Y, W)) < kOdCone“’X(zy W)
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Proof. This follows from the proof of [Bowl3, Proposition 9.1]; indeed the exact inequality
appears at the end of that proof. U

The modification of aoo uses a proposition of Bowditch [Bow18b, Proposition 2.4]:

Proposition 23.3. Let (M,v) be a median algebra with rank at most r. Let d be a metric
on M such that, for some k = 1, we have

d(v(a,b, ), v(a,b,d) < kd(c, d))
for all a,b,c,d e M. Then M has a metric d such that

e (M,d",v) is a median metric space of rank at most v, and
e (M,d) and (M,d") are L-bilipschitz equivalent, where L = L(r, k).

We now sketch Bowditch’s proof of the preceding proposition.
Sketch of Proposition[23.3 Given any a,b,c € M, we define

(a,b)9 — %(d(a,c) +d(b,¢) — d(a,b)).

We then let I(a,b)? be the set of ¢ for which (a,b)d = 0. This "generalised median interval"
measures the failure of d to be a median metric in the sense that I(a,b) = I(a,b)? for all
a,b if and only if d is a median metric for the median p (here I(a,b) denotes the y—median
interval between a and b).

For any finite median subalgebra A of M, we can assign a metric d4 as follows. If w is a
wall in A, then we assign it a width #(w) as follows: take the minimum of the values d(a, b)
as a, b vary over pairs in A that are separated by exactly the wall & (in other words, we are
assigning weights to hyperplanes in a finite cube complex according to the distance in M
between the endpoints of the various edges dual to the given hyperplane).

For a,b e A, we define da(a,b) = X 5epy(qp) #(). This is a median metric on A, and it
is bilipschitz equivalent to the restriction of d to A, with constant depending on kg and the
rank (details of this are in [Bow14, Section 5]).

The set of finite subalgebras of M, partially ordered by inclusion, is a cofinal subset of
the set of all finite subsets of M. An application of Tychonov’s theorem then gives a metric
d’, bilipschitz to d, such that d4(a,b) converges to d'(a,b) (as A grows), for any a,b € M.
By construction, for an a,b,c € M, we have that a,b,c, and m = u(a,b,c) all lie in A for
each finite subalgebra A in a cofinal subset. For any c € I(a,b), we have (a,b)94 = 0 for
such A, so I(a,b) < I(a,b)¥. On the other hand, if ¢ € I(a,b)¥, then da(c,m) — 0. So
I(a,b) = I(a,b)®, whence d’ is a median metric for p. O

The preceding proposition has been strengthened by Zeidler to account for isome-
tries [Zeil6]. In the following lemma, we summarise everything we will need later:

Lemma 23.4. Let (X, F) be a hierarchically hyperbolic space. Let Cone® (X) be an asymptotic
cone of X, and let p be the median on Cone®(X) arising from the coarse median on X.
Then there is a metric @: Cone¥(X)? — R, such that:
o the identity map (Cone® (X), dconew(x)) — (Cone®(X), D) is Ko-bilipschitz, for some
Ky =1 depending only on (X,5);
e (Cone”(X),D, ) is a finite-rank complete connected geodesic median metric space.
In particular, for all x,y,z € Cone®(X), we have:
(1) D(z, p(x,y.z)) < D(z,x).
(2) D(x,y) = D(x,z) + D(y,z) — 2D(z, u(x,y, z)).
(8) Median intervals in X are compact.
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If in addition X = G and (G,§) is an HHG, then we can choose the metric D on Cone* (G)
with the following additional property: for each a € G%,, the isometry a : Cone*(G) —
Cone”(G) remains an isometry when we equip Cone”(G) with the metric D.

Proof. The first assertion, and the fact that D is a median metric for u, follow from Propo-
sition [23.3, as does finiteness of the rank.

The original space (Cone”(X'),dcone (x)) is complete and connected, so by the first asser-
tion, (Cone¥(X'), D) is also complete and connected. By finiteness of rank and completeness,
intervals are compact [Bow20, Corollary 5.2]. Complete connected median metric spaces
are geodesic [Bowl6b, Lemma 4.6]. The enumerated claims follow immediately from the
definition of a median metric.

It remains to prove the statement about isometries. Since p is continuous with respect
to the do topology, (Cone‘”(G),aoo,u) is a finite rank metric median algebra, in the lan-
guage of Zeidler [Zeil6, Definition 3.1]. Since p: G — G is G-equivariant (see Section ,
p : Cone” (G)3 — Cone®(G) is G ;~equivariant, so the G* ;~action is by isometric automor-
phisms in Zeidler’s language. By [Zeil6l Proposition 5.1], (Cone“(G),aoo,u) is uniformly
rectifiable, in the sense of [Zeil6, Section 3|. So, using [Zeil6, Proposition 3.3] in place
of Proposition [23.3 yields a metric D with all of the itemised properties that additionally
satisfies the assertion about the action of G%,. O

Remark 23.5 (BBF colourings and finite products of R—trees). In many examples, D can be
chosen to arise from a bilipschitz embedding of Cone”(X’) into a finite product of R—trees. In
the case where X is a mapping class group, this was done by Behrstock-Drutu-Sapir [BDS11bl,
BDS11a], Bowditch [Bowl3, Section 12|, and Bestvina-Bromberg-Fujiwara [BBF15, Section
5]. This type of construction involves "colouring" the walls in the median space with finitely
many colours, such that like-coloured walls do not cross. In the mapping class group setting,
this can be done using the result of Bestvina-Bromberg-Fujiwara that the subsurfaces of a
surface can be coloured (by orbits under the action of a finite-index subgroup of the mapping
class group) in such a way that like-coloured subsurfaces are not disjoint (i.e. not orthogonal
as index set elements in the HHS structure). We will not use this now, but will return to
this idea in Section [35] O

24. ULTRALIMITS OF PRODUCT REGIONS

In Section where we show that (Cone”(X),D) is isometric to an R-cubing with p
the associated median, subspaces of Cone“ (X)) arising as ultralimits of sequences of product
regions will be important and the following proposition supports their use.

In the proposition, given a product region Py, we let Fy denote a subspace of the form
given in Section [15} recall that this involves an implicit choice of basepoint in Ep, which
we suppress. The different possible subspaces Fy, as that basepoint varies, will be called
parallel copies of Fy, reflecting the fact that Py is quasimedian quasi-isometric to Fyy x By

(Proposition m

Proposition 24.1. Let Cone®(X') be an asymptotic cone of X, with observation point (on)n,
ultrafilter w, and scaling sequence (jn)n-
Let (Up)n, (Vo)n be sequences of elements of § such that
° dX(Ona 9pry, (On))/Jn and
e dx(on, 9py, (0n))/jn are w-a.e. bounded, and
o V,, 2 U, for w—a.e. n.
Let Fy, < Py, be a sequence of spaces such that dx(on, 8r, (0n))/jn is w-a.c. bounded.
Then for w-a.e. n, there is a parallel copy Fy, such that Fy, is uniformly coarsely contained
in Fy, and dx(on, 9ry, (0n))/Jn is w-a.e. bounded.
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Hence lim,, Fy, < lim,, Fy, .

Proof. We first deduce the final "hence" statement from the previous part of the lemma.
Suppose (Fy,)n is as in the statement, and (Fy;, )y is such that, for some v < o0, we have
Fy, € N, (Fy,) for w-a.e. n, and dx(Fy,,0n)/jn is w—a.e. bounded. Then, taking (rescaled)
ultralimits, we have lim,, Fy, < lim,, Fy, , as required. So, given (Fy, ), as in the statement,
it suffices to find the (Fy; ), with the claimed property.

By hypothesis, dx(on, gp,, (0))/jn is bounded w-a.e.

Moreover, gr, (9py, (0n)) lies uniformly close to a parallel copy of Fy, that is coarsely
contained in Fy, , since V;, E U,.

Fu,
Fy Py Py,
gpy, (0n) 9ry, (9P, (0n))
O(jn) —Fyy, e 95y, (0n)
U, \Un

FIGURE 22. Proof of Proposition [24.1

We wish to show that
hgn(dé\f(om 9Fy, (gPVn (On)))/]n < 0,

since this will imply that Fy; contains points at linear distance from o,, and hence (by e.g.
Lemma 1.27 in [BHS17c|), the point gr, (0,) is at linear distance from oy, as required.

Now, by the definition of the gate, we have that gr,, (gp,, (0,)) lies on a uniform-quality
hierarchy path from gp,, (0,) to any point in Fy,,, and in particular gg;, (o,). Since hierarchy
paths are quasigeodesics, an application of the triangle inequality shows that this hierarchy
path has length bounded above by a linear function of

dx(on, 8py, (0n)) + dx(on, 85y, (0n)),

which is in turn w—a.e. bounded by a linear function of j, in view of our hypotheses.
Hence gr, (gpy, (0n)) is joined to gr, (0n), and hence to oy, by a path of length O(jy),
as required. So (Fy;, )p is visible in Cone”(X'), as required. O

We also need the following preparatory material about ultralimits of product regions.

Definition 24.2 (Legal sequence, §°). We say that the sequence (U,), of elements of § is
legal if
ln 4 (0. gy, (01))/dn < .
The legal sequences (Up)n, (Vi)n are equivalent if V,, = U,, for w—a.e. n. Let denote
the set of equivalence classes of legal sequences in §. ]

Definition 24.3 (Standard product regions in asymptotic cones). Let U € %, and let (U,,),
be a legal sequence representing U. Let

Py = lim Py, < Cone”(X).
w
We refer to Py as a standard product region in Cone® (X). O

Lemma 24.4 (Product regions in Cone” (X') are naturally gated). Let U € §* be represented
by a legal sequence (Uy)n. Then:
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(1) Py is a closed, median convex subspace of the median metric space (Cone®”(X), D, ).

(2) Py is geodesically convex in (Cone®(X), D).

(8) For each n, let gp, : X — Py, be the gate map (see Section E) Define gu :
Cone?(X) — Py by gu((zn)n) = limw gp, (zn). Then gu is well-defined, and is the
gate map to Py, in the median sense.

In particular, gy is a 1-lipschitz median homomorphism and gy (x) is the unique D—closest
point of Py to x, for all x € Cone” (X).

Proof. Let p,p’ € Py and let x € Cone”(X'). Choose admissible sequences (pp)n, (95, )ns (Tn)n
in X' respectively representing these three points. By Proposition [13.3) and Lemma [15.1,
there exists ), depending only on the HHS constants, such that for w—a.e. n, we have
L(Pn,s Py gn) € No(Pu,,). Hence p(p,p’,x) € Py, so Py is median-convex. As a rescaled
ultralimit of subspaces of X', Py is automatically closed. This proves (|1).

Since (Cone¥(X'), D, p) is a geodesic median metric space, median-convexity of Py implies
geodesic convexity. Indeed, if v is a geodesic of Cone”(X’) joining points x,y € Py, then for
any z € v, we have u(x,y,z) = z, so z € Py by median convexity. This proves .

Let x = (z,)n € Cone”(X). We need to show that (gp, (7n))n is an admissible sequence.
But since (2,,), is admissible, lim,, dx(on,#n)/jn < . Since gp, : X — Py, is (K, K)-
coarsely lipschitz for all n, where K depends on £*(0) and the HHS constants, we have

dx (on, 9Py, (zn)) < dx (o, 9Py, (on)) + Kdx(on, zs) + K,

which is w—a.e. bounded after rescaling — the second term was dealt with immediately above
and the first term is dealt with by legality of (U ). So, (gp,, (21))n is admissible, and limits
to a point gy(x) € Py that is independent of the choice of representative (x,),, by a similar
computation.

So, we have a well-defined retraction map gy : Cone®(X) — Py, which we need to check
is the gate map in the median sense (and hence the closest-point projection for D).

Let x,y,z € Cone“(X) be represented by sequences (z,,), (yn), (z). Then for all n, the
definition of 4 and gp, implies that 1 (gp, (zn), 8P, (Yn), 8Py, (22)) is uniformly close to
071, (2, 2n). Hence

gU(M(X, Yy, Z)) = H(QU(X)7 gu (Y)7 gu (Z))

In particular, if x € Cone“(X) and z € Py, then, letting y = gy (x), we have the following.
First, p(x,y,z) € Py by median-convexity, so gu(u(x,y,2z)) = pu(x,y,z). On the other
hand, gu(p(x,y,2)) = u(y,y,z) =y. So, u(x,y,z) = y. In other words, gy(x) is in the
median interval between x and any point in Py. Since this property characterises gate maps
in the median sense, we have proved .

The closest-point projection statement follows from the above characterisation of gates in
median metric spaces (see e.g. [Bow20, Section 4|) and the lipschitz statement follows from
e.g. [CDH10, Lemma 2.13]. O

Lemma 24.5. Let U € §* and let (Uy)n be a legal sequence representing U. For each n,
let ¢p, : Fy, x Ey, — Py, be the map from Section @ Let Fy and Ey be the rescaled
ultralimits of (Fy,)n and (Ey, )n, and let ¢ : Fy x Ey — Py be the limit of the maps ¢y,.
Then:

e ¢ is an isometry, where Fy x Ey is given the {1—metric, where the metric on each
factor is the restriction of D;
e ¢ is a median isomorphism, where Fy x Ey is given the product median.

Abusing notation, let Fy denote the image in Py of any parallel copy Fy x {e},e € Ey.
Then Fy is closed and median-convez in Cone”(X), and the gate map b : Cone”(X) — Fy
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factors as b = po gy, where p : Py — Fy is the natural projection to Fy x {e}. Again, b is
a 1-lipschitz retraction and is the closest-point projection to the given parallel copy of Fy.
In particular, if x,y € Cone®”(X), then D(h(x),b(y)) is independent of the choice of e.

Proof. By Proposition[15.7, ¢y, is a quasimedian quasi-isometry, with constants depending on
the HHS structure (but independent of Uy,). So, ¢ : FyxEy — Py is a median isomorphism.
Moreover, since Py is median convex in Cone®(X), median convexity of Fy x {e} follows
from median convexity of Fy in Fy x Ey. Equipping each parallel copy Fy x {e} with the
subspace metric inherited from (Py, D) makes ¢ an isometry. The statements about h then
follow as before from [Bow20, Section 4] and the fact that the gate map in Py to any parallel
copy of Fy comes from natural projection. O

In summary, we have the following. Let ¢(f,e) = x € Py, so that f is contained in
a unique parallel copy Fy = Fy x {e}. For each n, choose f, € Fy, ,e, € Ey, so that
lim,, ¢, (frn,€n) = ©p, where (x,,) represents x. Then ¢, (Fy, x {e,}) limits to Fy. In other
words, each parallel copy of Fy in Py is an ultralimit of parallel copies of Fy, .

As we discuss in Section Fy can be parallel to closed convex subsets not contained
in Py, although, in a way made precise in that section, this is an unimportant subtlety that
does not occur for the U that will correspond to nontrivial real trees in our eventual real
cubing structure. We merely emphasise that we work with parallel copies of Fy lying in Py,
and that we will often be concerned only with the set of walls crossing Fyy, which is in any
case independent of the parallel copy by Lemma [2.15.

25. HIERARCHY PATHS BECOME D—-GEODESICS

We need to discuss geodesics in Cone®”(X). Let x € Cone*(X) and let (x,), be an
admissible sequence in X representing it. For each n, let v, : [0,L,] — X be a (D, D)-
hierarchy path joining oy, to z;,,, whose existence is guaranteed by Theorem [10.7.

Since 7, is a (D, D)—quasigeodesic and (x,) is admissible, we have lim,, L, /j, = L < o0,
and we can thus take ultralimits to obtain an embedded path ~ : [0, L] — Cone“(X). By the
definition of a hierarchy path, we have for all a € [0, L,,] that m (o, zn,vn(a)) lies uniformly
close to v, (a). Hence, for all ¢ € [0, L], we have pu(y(t),0,x) = ~(t).

Lemma 25.1. The path ~ : [0, L] — Cone*(X) is a geodesic with respect to the metric D.

Proof. Since each =, is a uniform hierarchy path, we have for w—a.e. n that whenever
0 < s <t<u< Ly, the coarse median of v, (s), ¥, (t), v () is uniformly close to 7, (t).
Hence, whenever 0 < s <t < u < L, we have

(v (s),v(t),v(u) = ~(2).

Since (Cone“ (X)), D, ) is a median metric space, we deduce D(~y(s),~y(u)) = D(y(s),~(t))+
D(~(t),~(u)). More generally, if 0 = so < s1 < ... < s = L, then p(v(s:),v(s5),v(sx)) =
~(s;j) whenever ¢ < j < k. Hence

k—1
D(x,y) = D, D(v(s:),v(si11)),
i=0
so D(x,y) = |v|. Hence (after reparameterising by arc length), v is a D—geodesic. O

In the preceding lemma, there was nothing special about (o0, )y; it could have been replaced
with any other admissible sequence to show that any limit of hierarchy paths (not just one
starting at the basepoint in Cone® (X)) is a D—geodesic.
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Remark 25.2. In the case where X is the Cayley graph of the mapping class group of a finite-
type hyperbolic surface, the "hierarchy paths" part of Theorem 1.1 [BDS11b| corresponds to
the preceding lemma. O

26. STATEMENT OF THEOREM [26.3

In this section, we fix an HHS (X, §), and let E be the associated constant (in particular,
each 7y is E—coarsely surjective).

Fix a non-principal ultrafilter w on N, a scaling sequence (j,,), and an observation point
(on). Let Cone”(X) be the associated asymptotic cone of X, and let o be the point repre-
sented by the admissible sequence (0y,)y,.

We let p denote the median on Cone”(X) from Section and we let D denote the
median metric from Lemma @ (and we let Ky be the bilipschitz constant from the same
lemma, so that D is Kyp—bilipschitz to the original asymptotic cone metric).

In most of our applications, the HHS (X, §) satisfies two additional "combinatorial" con-
ditions, namely that § has wedges and clean containers. Later we will show that these
conditions persist in the real cubing structure on the asymptotic cone.

Remark 26.1 (Wedges). We say that § has the wedge property, or has wedges to mean the
following. Let U,V € § and suppose there exists W € § with W = U and W = V. Then
there is a unique E—maximal such W, denoted U A V. We will verify later that this holds
for our desired examples, like cube complexes and mapping class groups. ]

Remark 26.2 (Clean containers). We say that § has clean containers, a property we elab-
orate in Section [35] and verify for the main examples in Section if the following holds.
Let W e § and let U & W. Suppose that there exists V' & W with ULV. Then there
exists Ut = W such that UL LU and, if V = W satisfies VLU, then V = UL. Note that U+
is unique among elements properly nested in W with the given two properties. This property

strengthens Definition 10.1.. O
The primary goal of this section is to prove the following theorem.

Theorem 26.3. Let (X,F) be a hierarchically hyperbolic space. Then any asymptotic cone
Cone”(X) of X is bilipschitz homeomorphic to an R-cubing (Cone”(X'), §*) with nonempty
products. Furthermore, if the HHS index set § has the wedge property and clean containers,
then so does the real cubing index set §*.

The construction of the R—cubing in Theorem has several parts, carried out over the
next several subsections. Much of the work has already been done, since the crux of the
proof is an application of Theorem (recall that that is the theorem that turns finite-depth
tangible poset-colourings into real cubing structures).

27. THE INDEX SET g™ AND ITS RELATIONS

Let x= be the maximal length of =—chains in § and let y be the cardinality of a largest
subset of § whose elements are pairwise orthogonal; these constants exist by Definition [10.1]
and Lemma @; we can take x=, x* < x.

Let (Un)nen be a sequence with each U, € §.  Recall that (U,), is legal if
limy, ,, dx (0n, g Py, (on)) < o0, where Py, < X is the standard product region for Uy,.

Recall that the legal sequences (Up,)n, (Vy)n are equivalent if U, = V,, for w-a.e. n, and
that §° denotes the set of equivalence classes of legal sequences.

Definition 27.1 (Nesting, orthogonality, transversality in §©). Let U,V € §° be repre-
sented by legal sequences (Uy,)n, (Vy,)n respectively. Then one of the following holds:
e U, =V, for w-a.e. n, in which case we say U = V.
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V, & U, for w—a.e. n, in which case we say V = U.
U, LV, for w-a.e. n, in which case we say ULV.
U, MV, for w-a.e. n, in which case we say UhV.
U, =V, for w—-a.e. n, in which case U = V.

These are the relations we will use for making % a real cubing structure on the metric space
(Cone?(X), D). O

In view of the above definitions and Definition [10.1, we have the following. First, L is an
anti-reflexive, symmetric relation on §*, the relations = and L are mutually exclusive, and
U Vand VLW imply ULW. Moreover, any collection of pairwise orthogonal elements
of §* has cardinality at most x. Also, = is a partial order on §°, and any C-chain has
length at most x=. By Definition § has a unique E—maximal element, denoted S, and
Ps = X. So the constant sequence (S) is legal and represents an element S € §* which is
the unique CT—maximal element of F®.

Remark 27.2. Thus far, we have verified that §%°, with the relations =, 1, i, satisfies all
of the properties from Definition that do not involve the R—trees, projections, etc. O

If the HHS (X, §) has the wedge property and clean containers, so does the index set §*:

Lemma 27.3 (Wedges and clean containers in §*). Suppose that (X,§) has the wedge
property and clean containers. Let U, V, W € §®. The following hold:

(1) Suppose that UnV and the set of T € F° such that T = U and T £ V is nonempty.
Then there exists a unique S-maximal T € F* with T £ U, V.
If no such T exists, then limy, , diam(gr, (Fv,))/jn = 0, where (Up)n, (Va)n are
legal sequences representing U, V. l
In the former case, T is represented by a legal sequence (Ty,)n such that gr, (Fv;,)
coarsely coincides with a parallel copy of Fr, for w—a.e. n. Hence hy(Fv) is a
parallel copy of Fr, where hy is the gate map to Fy.
(2) Suppose that U,V & W and ULV. Then there exists a unique Ut = W such that
ULU* and T = U for all T = W with TLU.

Proof. Suppose that UMV and that the set of T € §* nested into U and V is nonempty.
Let (Up)n, (Vi) be legal sequences representing U, V. Choose parallel copies Fy, , Fy, such
that dx (on, 9r,, (0n))/jn is bounded w-a.e. and the same holds with V;, replacing U,.

By the definitions of standard product regions and gates and the wedges assumption,
9y, (Fy,) either has uniformly bounded diameter or coarsely coincides with a parallel copy
Fr,, where T;, € § is the unique =-maximal element nested in both U,, and V;, and having
the property that any W & U,, V,, is nested in T,; the existence of T, is provided by the
wedge property. In the former case, lim,, , diam(gr, (Fv;,))/jn = 0, as required.

In the latter case, let W), be such that W,, & U,,V, and (W,), is legal. Then we can
choose a parallel copy Fyy, that is uniformly coarsely contained in Fy, and has the property
that dx(on, Fw,,)/jn is w-a.e. bounded. Then gg, (Fyy,) coarsely coincides with a parallel
copy of Fyy, that lies uniformly close to the parallel copy of Fr,, described above. Similarly,
we can choose a parallel copy FICVTL lying uniformly close to Fy, and having the property
that dx(on, Fw,)/jn is w-a.e. bounded. Then gg, (Fw, ) is coarsely contained in a parallel
copy of Fr, coarsely equal to gry, (Fu,). Now, dx(Fw,, Fjy. )/jn is w-a.e. bounded, by
the triangle inequality. So, by Lemma 1.19 of [BHS17c|, dx (Fyy , 8ry, (Fw,))/jn, and hence
dx(on, Fr,)/jn, is w—a.e. bounded. Thus (7},), is a legal sequence representing some T € F*
with the property stated in assertion ([1).

So, for w—a.e. n, we have parallel copies Fy,, Fy, , Fr, such that

gF‘Un (Fvn) = FTTL’
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where = denotes coarse equality. Taking ultralimits and recalling that hyy — the gate map to
the parallel copy Fy = lim,, Fyj, — is the ultralimit of the maps gr, yields hy(Fv) = Fr.

Next, suppose that U,V = W and ULV. Then for w-a.e. n, we have U,,V, E W, and
U, 1V, so there exists UnL c W, such that UniJ_Un and every T' & W,, orthogonal to U, is
nested in U, Thus each parallel copy of Ey, coarsely coincides with some parallel copy of
Fyi, and in particular Py, is coarsely contained in Ppyi. Thus (U ), is a legal sequence,

and thus represents some UL € §° with the property stated as assertion . O

When it is clear from context, and we have clean containers, given U € §* orthogonal to
at least one other element of F*, we let UL be the unique maximal element orthogonal to
U (i.e. the element provided by the second item in the preceding lemma, taking W = S).

The level in §* is defined similarly to the level in the HHS structure:

Definition 27.4 (Level). Let U € §°. We define the level Level(U) inductively as follows.
If there does not exist V € §* with V & U, then Level(U) = 1. If there exists V € §* such
that Level(V) =n—12>1and V & U, then Level(U) > n. We say that Level(U) = £ if ¢
is the minimal n such that Level(U) > n. O

Remark 27.5 (Complexity drop). Note that Level(S) < x=. Without a cobounded group
action on X by HHS automorphisms, it may be the case that certain elements of § do not
survive in §° because the corresponding sequences of product regions are not legal, so we
may have xy= < x. This will not happen in our applications to HHGs, but it also does not
matter. It does show that one can construct HHSes whose asymptotic cones with different
rescaling sequences have different dimensions (and essentially different R—cubing structures),
which explains why our later uniqueness results are stated for HHGs only. ]

The basic data for an R—cubing involves an index set and some relations, which we have
just constructed. We now construct a poset-colouring, on our way to making R-trees and
projections.

28. POSET-COLOURING USING g%

Let W be the set of walls in the median metric space (Cone*(X),D, ). Let fio be the
measure from Section [2.4]

Recall that for each U € §°, we have a product region Py = Fy x Ey. In particular,
the various Fy x {e} are parallel in the sense of Definition since the gate map to
any parallel copy restricts to an isometry on any other parallel copy, by Lemma [24.5. In
particular, W(Fy x {e}) is independent of the choice of e € Ey, by Lemma [2.15.

Definition 28.1 (Relevant sequences, maximal relevant sequences). Let (Uy), be a legal
sequence in § and let (zy,)n, (yn)n be admissible sequences of elements in X.

We say that (the w—equivalence class of) (Uy),, is relevant for the sequences (zp)n, (Yn)n
if lim,, dy, (zn,yn) = 0. Let Rel((Xy), (yn)) be the set of relevant w—equivalence classes of
sequences (Up).

Let max Rel((zn)n, (Yn)n) be the set of w-classes of admissible sequences (U,), such that:

o (Uy)y is relevant for (xn)n, (Yn)n;
e if (V) is an admissible sequence in § such that U, & V,, for w-a.e n, then (V},), is
not relevant for (xy,)n, (Yn)n-

We call max Rel((zp)n, (Yn)n) the maz-relevant set for (xn)n, (Yn)n- O

Remark 28.2. We warn the reader that (Uy,),, € Rel((xy,), (yn)) need not have the property
that dy, (2n, Yn)/jn is unbounded. We really mean the un-rescaled ultralimit is infinite. [
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We remark that the max-relevant sets for (2, )n, (Yn)n and (2),)n, (y,,)n might be different
even if lim, z, = lim, 2} and lim, y, = lim, y,,. So in the lemmas below, we have to be
careful to distinguish between admissible sequences and the points in the asymptotic cone
that they represent.

First, the max-relevant set defined above is finite and nonempty for any pair of admissible
sequences representing distinct points in the cone:

Lemma 28.3. Let (vy,)n and (Yn)n be admissible. Then | max Rel((xn)n, (Yn)n)| < 0. Fur-
thermore, if the sequences represent different points in the cone, then

max Rel((xn)n, (Yn)n) # .

Proof. We first check finiteness, using Definition [I0.1, and then we check nonemptiness.

Finiteness: Given an w—class (V},) of sequences in §, let Level((V,)) be the integer ¢ such
that V,, has level ¢ for w—a.e. n, which exists because of the bound on complexity. (Recall
that the level of V' € § is the length of a longest =—chain with maximal element V'.)

Let max Rel™™™) (), (4n)n) be the set of (Uy,) € max Rel((€3)n, (Yn)n) such that U, = V;,
for w—a.e. n.

Let S € § be the E-maximal element. Note that if limy,dg(zy,y,) = o0, then
max Rel((@n)n, (Yn)n) has a single element (and in particular the set is nonempty), rep-
resented by the constant sequence (S),. In this case, we are done, so suppose that
lim,, dg(,, yn) < 00. Then there exists M such that for w-a.e. n, we have V!,..., VM ¢
& — {8} such that any U € § with dy (2, yn) > E satisfies U = V! for some i, by the large
link axiom (Definition [10.1.(6)).

Hence there exist sequences (V,!),, ..., (V;M), such that the following holds. If (U,), is a
sequence with limy, dy, (2, yn) = o0, then there exists i < M such that U, = V! for w-a.e.
n. In particular,

M .
max Rel((@n)n, (yn)n) = |_J max Rel"™ ((2)n, (yn)n)-
i=1

So, it suffices to show that each max RelV")" (), (yn)n) is finite.

Fix i and let V;, = V;! (for convenience). We argue by induction on Level((V},)) that
max Rel") ((2,,)n, (yn)n) is finite.

If Level((V;,)) = 1, then V,, is =—minimal for w-a.e. n, so any sequence that is w—a.e. nested
in (V,) is w—equivalent to (V;,). In particular, maxRel") ((21)n, (yn)n) has cardinality at
most 1. This handles the base case.

The inductive step is almost the same as the preceding discussion of S. Specifically, if
lim,, dv;, (5, yn) = 00, then max RelV) ((2,,)n, (Yn)n) has cardinality 1, because it contains
only the sequence (V;,), and we are done. Hence suppose that lim,, dy;, (zp, yn) < 0.

Then there exists M such that, for w-a.e. n, we have elements U}, ..., Ué‘/f = Vi, such
that any U € § with dy(zn,yn) > E, we have U = U! for some i (this is an application of
the large link axiom).

In particular, if (U, ), € max RelY") ((&,)n, (yn)n), then for w-a.e. n, we have that:

e U, V,, and
e dy, (Tn,yn) > E, so U, E U_ for some i.
Hence there exists 4 such that U,, = U} for w-a.e. n. In particular,

M .
max Rel V™) (), (yn)n) = | maxRel ) ((z)n, (yn)n)-
i=1

So, by induction on level, max Rel™")((z,), (yn)n) is a finite union of finite sets.
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Nonemptiness: Suppose that (x)n, (yn)n represent distinct points in Cone”(X’), and
let € > 0 be less than the distance between these two points (in the original asymptotic cone
metric).

Recall from Definition @ (uniqueness axiom) that there is a function 0, : Ry — Ry
such that for all a,b € X and all K > 0, we have that dx(a, b) > 6,(x) implies that dy (a,b) > «
for some V € §.

For w—a.e. n, we have dx(zn,yn) = €jn. For each n, let V,, be such that dy, (z,,y,) is as
large as possible for the fixed x,, yn, as V,, varies in §. This is possible since we can assume
the maximal such projection distance is more than E and apply Lemma[11.4] We claim that

e (V},) is legal, and
o lim,, dy;, (zn, yn) = 0.

For any N € N, we have that dy; (2, y,) < N implies that d(z,,y,) < 6,(N), which is
less than €j,, for w—a.e. n since €j, is unbounded. So the set of n such that dy; (x,y,) < N
is not in w, i.e. dy, (xn,yn) > N for w—a.e. n. This proves the second bullet point. On
the other hand, for w—-a.e. n, we have dy, (,,y,) > 200DE, where D is the constant from
Proposition @ Hence x,,yy are joined by a (D, D)-hierarchy path that comes within a
uniformly bounded distance of Py, . Thus d(oy,, Py,) can be bounded in terms of d(op, )
and d(zp, yn), so (V,,) is legal. Thus Rel((zn)n, (Yn)n), and hence max Rel((zn)n, (Yn)n)), is
nonempty. This completes the proof. ]

The next lemma is important because it relates the max-relevant set for a pair of admissible
sequences to the set of walls separating the corresponding points in Cone® (X').

Lemma 28.4. Let U € §°, fix a parallel copy Fy < Py, and let X,y € Fy.

Let (Uy)y be an admissible sequence of elements from § that represents U.

Then there exist (zp)n, (Yn)n, admissible sequences that represent x and 'y respectively,
such that

® x,,Yy, € Fy,, where lim,, Fy, = Fy;
o maxRel((@n)n, (yn)n) = max Rl (@), (yn)n) = (s -, (Up)a}; in partic-
ular, for 1 <1 <7, we have U}, E U, for w-a.e. n;

e Wxy) s U WFEw,)-

1<i<r
Moreover, the second two bullet points hold for any sequences (), (yn) that represent X,y
and satisfy the first bullet point.

Remark 28.5. The set max Rel((@y)n, (Yn)n) depends on the choice of sequences, not just
on x,y. But suppose that (z],), also represents x. Then any (V},) which is relevant for
(%n)n, (Yn)n but not (x7,)n, (Yn)n has the property that dg, (g7, (2n), 85, (27,)) is sublinear
in (j), and thus no wall separating x,y crosses Fy, where (V;,) represents V. So the (U})
from the statement that actually matter for the purposes of the third bullet point are uniquely
determined just by x,y. However, we won’t need this. ]

Proof of Lemma[28.4 Let (x],)n, (y,,)n be admissible sequences representing x and y. By
Definition Py = lim,, Py, and so there exist parallel copies of Fy, such that Fy =
lim,, Fy, . Define z, = g, (27,) and yn = gy, (yn,)-

Since x,y € Fy, it follows that (z],), is at distance o(j,) (sublinear growth with respect
to the rescaling constants) from Fy;, and so at sublinear distance from z,, (see e.g. [BHS17¢|
Lemma 1.27]).

Therefore, (z),), and (z5)n (resp. (yn)n and (y),)n) represent the same point in Cone”(X').
The sequences (), and (yp), satisfy the condition of the first item.

Since zp,yn, € Fy,, it follows that if dy, (x,,y,) is sufficiently large in terms of the
HHS constants (independently of n), then V,, © U,. Therefore, max Rel((zn)n, (Yn)n) =
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max Rel @) ((2,), (yn)n) has finitely many elements {(U}),, ..., (U%),} (by Lemma @)
and U! = U, for w-a.e. n and for all i = 1,...,r. This proves the second item of the
statement.

We now prove the third item, which will involve some sub-claims.

Proof of the third item: If x =y, then W(x,y) is empty and so the third item holds
trivially. So assume that x # y. Then W(x,y) is nonempty and from Lemma @ the set
max Rel((2n)n, (Yn)r) is also nonempty. Let {(U.),}"_; be the max-relevant set, which is
finite by Lemma For each 4, let U’ be represented by the sequence (U}),.

Let w € W(x,y) and suppose that x € w and y € w*. We need to prove that w crosses
some Fy: (recall from Lemma @ that whether or not @ crosses Fy, is independent of the
choice of parallel copy).

Claim 16. For 1 < ¢ < r, there exists a parallel copy Fy: such that I(x,y) n Fy: # &, and
that intersection is closed and convex.

Proof of Claim[16. Since the median p on Cone”(X) is defined to be the limit of the coarse
median p on X, we have that I(x,y) = lim, Hg(zn,yn) (see e.g. [BHS17c, Lemma 3.2|).
For each i < r, we have that d(y:)(2n, yn) > 200DE for w-a.e. n, so by Proposition m
and hierarchical quasiconvexity of Hy(zy,yn), we have that Hy(x,,y,) contains points uni-
formly close to Py:. So Pys n I(x,y) # &, whence we can choose Fy: in its parallelism
class so that I(x,y) n Fyi # . As an intersection of closed convex sets, this intersection is
closed and convex in I(x,y). g

For each i < r, let A’ = Fyi n I(x,y). By the preceding claim, A’ is nonempty, closed,
and convex.

Suppose towards a contradiction that @ ¢ W(Fyy:) for all ¢ € {1,...,7}. Then for each 1,
we have A’ c w or A’ < w*.

Let L be the convex hull of the set {x} U {A? | A’ = w} and let R be the convex hull of
the set {y} U {A? | A’ < w*}. (By the convex hull of a set, we mean the intersection of all
closed convex subsets containing that set. So, L and R are closed convex subsets of I(x,y).)

Claim 17. There exist w € wn I(x,y) and z € w* N I(x,y) such that by (w) = byi(z) for
I<i<r.

Proof of Claim[17. Tt suffices to find w € w n I(x,y) and z € w*I(x,y) such that the gates
of w,z on A’ are equal for all i. (These gates are well-defined since A’ is closed and convex.)

By choosing a closest pair w € L,z € R, we have that the gates of both w,z in L coincide
with z, and the gates of both w,z in R coincide with z (see e.g. [Fi020, Lemma 2.4]). So,
since each A’ belongs to L or R, the gates of w,z in each A’ coincide.

So to conclude, it suffices to prove that L < w and R < w*. (The worry is that, although
each A’ in L belongs to w, the set L itself might only belong to the closure of w, a priori.)

Since Cone® (X) is a finite-rank, complete median space, we may assume in view of [Fio20),
Corollary 2.23| that w* is closed and w is open. So R < w*, and we just need to prove that
Lcw.

Up to relabelling, there exists s < r such that i < s if and only if A’ c w. (If s = 0, then
L = {x} and we are done, otherwise s > 1.)

We will construct a closed, median-convex susbet B such that

e X € B;
e A’ c Bfori<s;
e Bcw.

By the definition of L, it will then follow that L < B and hence L < w, as required.
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Since I(x,y) is a complete, finite rank median metric space, it admits a metric o, bilipschitz
equivalent to the restriction of D to I(x,y), such that closed balls in the o metric are median
convex. (This follows by combining [Bow20, Lemma 3.2] with the results from [Bow20,
Section 6].)

For each i < s, let y* be the gate of y on A’. Note that A’ = I(x,y?) since A’ c I(x,y).

i

(More specifically, for any a € A%, we have u(x,y,a) = a, and we also have pu(a,y,y’) = y'.
Combining these with a standard identity for median algebras gives

pla,x,y") = pla,x, pla,y,y")) = pla,y', pla,x,y)) = ula,y', a) = a.

So, a € I(x, yl))
Since each y* lies at positive D-distance from w*, the same is true for the o-distance.
Hence there is a closed o—ball B, centred at x, such that B < w and y* € B for i < s. By

convexity of o—balls, we have I(x,y*) = B for i < s, and hence A’ c B, as required. 0

At this point, we have w € w, z € w*, so w # z, but w,z have the same gate on A;, and
hence on Fy,, for 1 < i <r. Using the points w, z, we derive a contradiction as follows.

Recall that I(x,y) = lim,, Hg(zn, yn), so we can choose admissible sequences (wp,)n, (2n)n;
respectively representing w, z, with wy,, 2z, € Hg(Zn, yn)-

Let M be sufficiently large, as prescribed by Proposition [16.1

For each n, apply the cubical approximation theorem (Proposition . This yields a
constant C', independent of n but depending on M, and C—quasimedian maps f,]LV[ 'Y, —
X, where Y, is a finite CAT(0) cube complex and fM is a (C,C)-quasi-isometry onto
Hy(xy,yn). Moreover, the labels of the hyperplanes in Y,, are precisely those U € § for
which dyr (2, yn) > M.

Choose w),, 2, € Y,, such that d(fM (w},),w,) < C and the same is true for z/,, z,. Now,
since w, z are distinct, Lemma [41.4] gives max Rel((wy), (2,)) # &.

Let (W,,) be an admissible sequence such that lim,, dy, (wp, 2,,) = 0.

Applying Proposition M(IV), we have that for w—a.e. n, the element W,, appears as a
label of a hyperplane in Y, separating w},, z/,.

Moreover, let a be a combinatorial geodesic in Y,, joining vertices mapping to x,,y, and
passing through w/,. Then since Y, is the convex hull of the endpoints of « (Proposition@
and fM o o is a hierarchy path with constants depending only on the HHS structure and
the fixed constants M, C (again by Proposition , we see that my, (wy,) lies uniformly
close to a CW,,—geodesic from my, () to mw, (yn). The same is true for my, (2,). Hence
dw,, (¥, yn) is unbounded, since dy, (wy, 2,) is. Thus there exists i < r such that W,, © U?
for w—a.e. n.

Observe that there exists R, independent of n, such that

sSup dv(wn, zn) < R
Ves—viSys

for w-a.e. n.

If not, then for each R > 0, we can choose for w-a.e. n some Vg, not nested into any
Ul and satisfying dv.,, (wn, 2n) > R. For each n, choose V;, so that dy,, (wn, 2,) is maximal
over V, not nested in any U!, which is possible for w-a.e. n in view of Lemma @, taking
R = E. So for any R and w-a.e. n, we have dy, (w,,2,) = dvg, (wn,2,) > R. Thus
(V) € Rel((wy,), (2,)) but V;, &£ U}, which contradicts the preceding discussion.

By two applications of the distance formula (Theorem , with threshold R, and the
definition of coarse gate maps in X', we thus have a constant A, independent of n, such that
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for w-a.a. n,
i=1

The assumption that w,z have the same gate on each Fyj;: implies that the right hand side
is sublinear in (j,), whence d(w,z) = 0, a contradiction.
Thus the wall w crosses some Fyy:, as required by the third item in the lemma. 0

Lemma 28.6. Let U,V € §° be such that hpy (Fv) is not trivial, i.e. there exists a
wall crossing bry(Fv). Let x,y € bpy(Fv). Then there exist X'y’ € Fy and rep-
resentative sequences (Tn)n, (Yn)n, (X0)n, (Yo)n of X,y,X', and y' respectively, such that

max Rel((zn)n, (yn)n) = max Rel((z),)n, (7 )n) and Rel((zn), (yn)) = Rel((7,), (47))-

Proof. Let (Up), and (V,), be sequences representing U and V respectively.

Since by assumption x,y € g, (Fv), x and y can be represented by sequences (zy)n, (Yn)n
such that x,,y, € gr, (Fv,). Define z;, = gy, (zn),y, = 9r, (Yn). Then (z7,)n, (Yn)n
represent points x',y’ in hy(Fv).

By [BHS17¢, Lemma 1.20|, we have for any sufficiently large K (in terms of the HHS
structure) that Relg (2, yn) = Relg (2], y),) for w—a.e. n. The lemma follows. O

Lemma 28.7. Let w e W, and let w,w* be the associated halfspaces. If W crosses Fy, i.e.
w N Fy and w* n Fy are both nonempty, and w crosses Fv, then there exists W £ U,V
such that W crosses Fw. In particular, there exists a unique T-minimal U € F% such that
w crosses Fy.

Proof. Let (Up)n, (Vy)n be legal sequences representing U, V. By assumption, Fy and Fy
are crossed by w. Our goal is to show that there exists W = U, V such that w crosses Fw.
Since w crosses both Fy and Fy, we also have that w crosses hy(Fv), which is therefore
non-trivial (since it intersects both halfspaces w, w*).

Let x,y € buy(Fv) be such that @ € W(x,y) and let (zp)n,(yn)n be two admissi-
ble sequences that represent x,y respectively and such that x,,y, € gy, (Fy,) for w-a.e.
n. Let (2))n = (gv,(zn), (Yo)n = ov,(yn) € Fy,. From Lemma [28.6, it follows that
max Rel((zn)n, (Yn)n) = max Rel((z7,)n, (y7,)n)-

By Lemma [28.4, we have that there exists (W,), € maxRel((zn)n,(yn)n) =
max Rel((z),)n, (yy,)n) such that W,, = U,, W, = V, for w-a.e. n (and so (W), C
(Un)n, (Vi)n) and w € Wr .., - The element W € §% represented by (W,,), satisfies the
desired properties.

Let us now show that the existence of a E-minimal element crossed by a given wall w.
First, we have Cone“(X) = Fg where S is the unique =-maximal element of F*. So, by
finite complexity, there exists U that is E—minimal with the property that @ crosses some
(hence any) parallel copy Fy. However, if V is some other element of §* such that w
crosses Fy, then, as shown above, there exists W such that W = U,V and w crosses Fw.
By minimality of U, we thus have U = W | so either V = U or V wasn’t E—minimal. Hence
there exists a unique such U with the desired properties. O

In

Define a map Col : W — § by declaring Col(w) to be the unique C—minimal element
U € §* such that w crosses Fy; this element is provided by the preceding lemma.

Lemma 28.8. The map Col : W — (F©, ) is a finite-depth poset-colouring.

Proof. We verify the conditions from Definition First, as explained above, §° has a
unique =-maximal element S. Finite depth follows since E—chains have length at most x=.

It remains to check the enumerated parts of Definition [3.1] Recall that for each U € %,
the set W is the set of walls @ with Col(w) = U, and Hy is the set of associated halfspaces.
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Item : We must show that Wys is inseparable. Let fL, v € Wy. Since h crosses Fcol(iz)
and Col(il) = U (so Fcol(f}) c Fuy, up to choosing parallel copies), we have that h crosses

Fy. Similarly, © crosses Fy. Hence, by convexity of Fy, if @ is a wall separating iL, 0, then
@ crosses Fy. Let V = Col(a). Then by definition @ crosses Fy. Since @ crosses both Fy
and Fv, it follows from Lemma [28.7, that there exist W = U,V such that @ crosses Fwy.
From the minimality of V, it follows that W = V and so Col(a) = V £ U. We conclude
that @ € Wy, as required.

Item @: Let U,V € §*. Recall that Hy, Hv denote the sets of halfspaces associated
to walls in Wy, Wy. Suppose that we have nonempty A < Wy and B € Wy,. Recall that
‘H 4 denotes the set of halfspaces associated to walls in A.

Suppose that fio(Hy — H.4) = 0, and the same holds with V replacing U and B replacing
A. Suppose moreover that every wall in A crosses every wall in B.

Let A = Fy, B = Fy. Up to measure-0 sets, we have Hq = Hyq n H(Fy) and Hp =
Hp N H(Fv). Applying Proposition we have that (up to parallel copies) there exists
an isometric embedding Fy x Fy — Cone”(X) with median-convex image. Since Fy, Fy
are nontrivial, it follows that neither contains the other (even up to parallelism), whence
Fy, Fv are unrelated by containment up to parallelism. Hence U,V are E—incomparable,
as required.

Item : Let U,V € §*. Suppose that A is an inseparable set of walls with Col(A) &
U,V and suppose that fio(H4) > 0. Then each a € A crosses Fy and Fy.

Fix a parallel copy Fy and a parallel copy Fy, and let H = hy(Fy). So, each a € A
crosses H.

Let P be the set of pairs {x,y} < H such that fio(H(x,y) n H4) > 0.

For each {x,y} € H, we can choose a finite collection R(x,y) of elements W € F* such
that

e WCU,V;

s W(x,y) = UWER(x,y) W(Fw) n W(x,y);

e flo(H(x,y) " HanHw) > 0.
The set R(x,y) is provided by Lemma [28.4 and Lemma [28.6]
Now let R = U{X7y}ep R(x,y). Then, by construction,

e WC U,V for all W € R;
o fio(HanHw) >0 for all W e R.
We are left to show that fio(H4 — ( U Ha N HFw)) = 0. By the definition of fio

WeR/
(see |Fio20, Section 3.1]), it suffices to show that, for any x,y € Cone”(X), the set

H(x,y) 0 Ha— (| Han Hew 0 Hx,Y))
WeR

has measure 0 for all {x,y} € P. But this is immediate since

W(Xv Y) = U W(FW> N W(Xa y)'
WeR(xy)

Item (IV): Suppose that U,V € §* (we allow equality). Suppose that A, B are sets of
walls such that

every element of A crosses every element of B;
every element of A has colour nested in U;
every element of B has colour nested in V;

[ ]
[ ]
[ ]
e the sets of halfspaces associated to A, B have positive fio-measure.
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Consider sets {U;} and {V} satisfying Definition for A, U and B,V respectively.

In other words, suppose we have:

e U; = U for all ¢, and
o fio(Ha N Huy,) > 0 for all i, and
o fio(Ha —J,Hu, nHa) =0,
and the same holds with {V;} replacing {U;} and B replacing A and V replacing U.
Among sets {U;} and {V;} with the given properties, choose these sets so that the maxi-
mum levels of the U;, V; are as small as possible. (Recall that the level of U; is the length of
a longest =—chain with maximal element U;.) More precisely, assume that for each i, there
is no family {U’} such that each U’, © U; and the family {U;}ir»; U {U’} has the properties
enumerated above. This is possible by finite complexity.
Note that the first, second, fourth, and fifth bullet points from Definition . are
satisfied by these sets.

Claim 18. The families {U;} and {V;} have the property that U; L'V for all 4, j.

Proof of Claim[18. Fix i € I,j € J. Since H 4 n Huy, has positive fio-measure, there exist
x,y € Fy, such that

flo(Ha n Hu, 0 H(xy)) > 0.

Indeed, as explained in [Fio20, Section 3|, a set of halfspaces has positive measure only if
it has positive-measure intersection with H(x,y) for some x,y.
Likewise, we can choose w, z € Fy, such that

fio(Hp N Hv,; nH(w,z)) > 0.

Since all walls in A cross all walls in B, we thus have a, b, c,d € X such that

e a,b,c,d, in that order, form a median rectangle in X, and
e H({a,d},{b,c}) contains H4 n Hu, n H(x,y) and U; € Rel(a,b), and
e H({a, b}, {c,d}) contains Hp N Hv; N H(w,z) and V; € Rel(a,d).

Indeed, we can start with x = a,y = b, and then obtain d, c by moving a, b, respectively,
across the walls in Hg N Hvy, N H(w,z). Then use use [CDH10, Remark 2.23.(2)] to tighten
to a median rectangle. See Figure

We call the ordered 4-tuple (a, b, c,d) a test rectangle for U;, V;, A, B.

Let (an)n, (bn)n, (¢n)n, (dn)n be sequences in X converging to a, b, ¢, d, with the property
that b, uniformly coarsely coincides with the coarse median of a, b,, ¢, for w—a.e. n, and
the analogous property holds for each of the triples b,,c,,d, and c¢,,d,,a, and d,,ay, b,
(i.e. for w-a.e. n, the points ay, by, ¢y, dy, form a coarse median rectangle).

To arrange this, first choose (ay), (bn), (¢n), (dy) representing a, b, ¢, d respectively. For
each n, replace by, ¢, by their images under the gate map to Hy({an, ¢, }). This moves each of
b, ¢, a distance bounded by a sublinear function of j,. Then replace a,, ¢, by their images
under the gate map to Hy({bn,cp}).

Now apply Proposition [16.1] and consider the cubical approximation f, : Y,, — X of the
hierarchically quasiconvex hull of {a,, by, ¢y, dy,}. Since this map is quasimedian, the vertices
an, bl ch . d, mapping to ay,by,c,,d, can be chosen to form a median rectangle in Y,. So
the set of hyperplanes is partitioned into two subsets U (separating {a,b} from {c,d}) and V
(separating {a, d} from {b, c}) such that every hyperplane in U crosses every hyperplane in V.
By Proposition @, we can thus write (for some sufficiently large constant M independent
of n) the set of W € § such that some pair of the points in {ay, by, ¢y, dy,} project at least
M—far apart in CW as

Relps(an, bn) u Relys(an, dy),
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with every element of the first factor of the disjoint union orthogonal to every element of the
second.

Conclusion: To complete the proof of the claim, i.e. to show that U; LV, we will
use the nest-minimality assumption on U;, V; to show that the test rectangle (a,b,c,d)
and the representative sequences (ay), (by,), (cn), (d,) as above can be chosen so that there
are legal sequences (U,), (V,), representing U;, V;, for which U,, € Rely(an,b,) and V,, €
Relys(an, dy,) for w-a.e. n. Then the above will show that U,, LV, for w-a.e. n, i.e. U; LV;.

Next, note that:

fio(Ha n Hu, nH(x,y)) = fio(Ha n Hu, n H(a,b)) > 0.

The same holds with B replacing A and V; replacing U; and {w,z} replacing {x,y} and
{a,d} replacing {a, b}.

Moreover, without changing the measures of any of the preceding intersections of sets of
halfspaces, we can assume, by taking gates, that x,y are respectively the gates of a,b in Fy,
and w,z are respectively the gates of a,d in Fy,, as in Figure

L[]
— | | I

X y

) Wi N Wy, N1 W(w, z)

A :

—_——
WaN Wy, NW(x,y)

FIGURE 23. A test rectangle in the conclusion of the proof of Claim

Now let (xy,), (yn) be sequences such that z, is the (coarse) gate of a, in Fy, and y, is
the gate of b, in Fy, . Similarly, choose (wy,), (2,) to be sequences in Fy, arising as gates of
(an), (dyn). So (zy), (yn), (wn), (2n) respectively converge to x,y,w,z. Note that the coarse
gates of x,, ¥y, on the coarse median interval in X between a,, and ¢, coarsely coincide with
an and by,.

Hence (see [BHS17c, Lemma 1.20]) we have maxRel((an), (by)) = maxRel((zy), (yn))-
Now, if (U,) € maxRel((zy),(yn)), then U, € Relpy(an,b,) for w-a.e. n, as desired.
Otherwise, Lemma @ implies that there exist Wy,..., Wy & U; such that W(x,y) <
Uéf:lW(FWe)'

Similarly, either V;, € Relys(an, dy,) for w—a.e. n, or there exist T+, ..., Ty & V; such that
W(w,z) < Uk W(FT,).

Hence we have the following. Either we can choose our test rectangle (a, b, c,d) in such a
way that U, € Rely(an,by) and V,, € Relys(an, dy) for w-a.e. n — and hence U; L'V, — or
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we can assume the following holds (up to replacing U; with V; etc.): for each x,y such that
fio(Ha n Hu, nH(x,y)) >0,

there exist Wi,..., Wy = U; such that W(x,y) u’g:lW(ng). In this case, we can
modify the collection {Uy}yc; by replacing U; with the collection of all such Wy, as x,y
vary. This contradicts our nest—minimal choice of {U; };c;. This proves the claim. O

From Claim , we have that U; L V; for all 4,j. This then provides a product region
Fy, x Fy,, which in turn implies that all walls crossing the first factor — i.e. all walls in
Wy, — cross all walls crossing the second factor — i.e. all walls in Wy . This completes
the verification of Definition , and hence the proof that Col is a poset-colouring. [J

Remark 28.9. In our later applications, the HHS (X, §) has wedges and clean containers.
Under these hypotheses, §° does, also, by Lemma [27.3] This simplifies considerably the
proof that Col is well-defined and a colouring. Specifically, it allows us to choose the families
in the third and fourth parts of the definition of a colouring to be single elements (arising as
appropriate wedges and orthogonal complements), and removes the need to use max-relevant
sets for sequences. d

We now need to check tangibility. The following statement will be useful for this, and
again later.

Corollary 28.10. Let U e §*. Then Wy = W(Fu). In particular, Wy = & if and only if
Fy is a single point.

Proof. Let w € Wy. By definition, this means that Col(w) = U, so up to parallelism,
Foow) © Fu. Since @ crosses Foy(i), we see that w also crosses Fu, i.e. w € W(Fuy).

On the other hand, suppose that w € W(Fy), i.e. w crosses Fyy. Now, by the definition
of the colouring, 1 also crosses F (). So, applying Lemma @, there exists W such that
w crosses Fyw and W £ U and W £ Col(w). But the nest-minimality part of the definition
of Col(w) implies W = Col(w), so Col(w) £ U, i.e. w e Wyy. This completes the proof. [

When Wy is nonempty, we construct a halfspace-filter oy as in Definition

Lemma 28.11. For each U € §° for which Wys # &, the filter oy is tangible. Hence Col
satisfies the tangible filter condition from Definition [2.17

Proof. By Corollary 28.10, Wy = W(Fy). Recall the construction of oy. Fixing an (arbi-
trary) basepoint xo € Cone*(X), we choose for each wall {w,w*} = W not crossing Fy an
associated halfspace w € oy as follows:

e if w crosses all of the walls in W(Fy), then xg € w;
e otherwise, w is the halfspace containing a halfspace associated to a wall crossing Fy.

Let Q be the union of all closed convex subspaces parallel to Fy. Note that Py € Q
(in principle, the containment can be proper). Let x{ be the gate of xo in Q, and let
X( = 9Py (X0), which is also the gate in Py of x(. So D(x¢, x() < D(xg,Py) < o since U
is legal.

On the other hand,

ﬁO(O’UAO'xO) = D(XO, X6)7

which is thus finite. Hence oy is tangible. O
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29. PROOF OF THEOREM [26.3

By Lemma[28.8 and Lemma[28.11] the map Col : W — F¥ is a finite-depth poset-colouring
satisfying the tangible filter condition.

Now, in general, the orthogonality relation on F* coming from Section might not
coincide with the orthogonality relation on §° coming from the colouring and used in the
proof of Theorem (which we are about to apply).

However, this issue is fixed by restricting the codomain of the colouring map Col to the
image of Col.

Definition 29.1. Let < §* be the image of the poset-colouring map, that is, §F7 =
Col(W), where Col is as in Lemma [28.8] O

The advantage of restricting the codomain is the following lemma:

Lemma 29.2. Let U € §F. Then for any parallel copy Fuy < Puy, there exist x,y € Fy
and sequences (U,), (Fu, ), (zn), (yn) such that for w-a.e. n, we have x,,y, € Fy,, and
lim,, z, = x,lim, y, =y, lim, Fy, = Fu, and (Uy,) represents U, and

(Un) € maxRel((zn), (yn))-

Moreover, for any wall W with Col(w) = U, we can choose x,y as above with the additional
property that w € W(x,y), and in fact (z,,), (yn) can be chosen as above for any x,y € Fy
separated by w.

Proof. Suppose that (U,) is a legal sequence representing U. Fix a parallel copy of Fy, so
that we can choose (Fy,) with lim,, Fy;, = Fy.

By hypothesis, there exists a wall w = {w, w*} with Col(w) = U. In particular, W crosses
Fy, so we can choose x € w N Fy and y € w* n Fy.

Choose legal sequences (zy), (yn) such that z,,y, € Fy, for w—a.e. n and lim,x, =
x, lim,, y, = y. Now, since Col(w) = U, the wall & cannot cross Fw for any W & U, so by
Lemma 28.4 and the fact that @& € W(x,y), we have (U,) € max Rel((zy), (yn)). O

Remark 29.3 (Warning). The converse to the preceding lemma does not hold. Specifically,
we can choose U and points x,y € Fy such that U is represented by a legal sequence (U,,)
and (Up,) € max Rel((xy,), (yn)), but there are (possibly infinitely many) W & U such that
all but a measure-0 set of the walls separating x,y cross some Fyw and hence have colour
properly nested in U. ]

Now we can compare the different notions of orthogonality:

Lemma 29.4. Let U,V € S’io. Then the following are equivalent:
(1) Every wall crossing Fy crosses every wall crossing Fy;
(2) Fu,Fv are respectively parallel to closed conver subspaces A, B < X such that the
convex hull of A U B splits as a product A x B;
(3) for all walls h,o respectively crossing Fy and Fy we have Col(h)LCol(), where
orthogonality is as defined in Section [27;
(4) ULV, in the sense of Section[27.

Proof. We first prove the equivalence of and .

That implies is obvious. The converse follows by applying Proposition @

Next, we prove equivalence of and . First assume that holds. By hypothesis,
we can choose walls h, v with colours U,V respectively. In particular, h crosses Fy and ¢
crosses Fvy, so by , we have ULV. Next assume that holds. Choose walls h crossing
Fy and ¢ crossing Fy. By Corollary we have that Col(h) = U and Col(9) = V. So
ULV implies Col(h)LCol(d), as required by ).
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To conclude, we will prove implies and implies ([2).

First assume (3). Let h,% be walls with Col(h) = U,Col(d) = V, which exist since
U,V e §7. By (3), we see that ULV. Letting (Uy,) and (V;,) be legal sequences representing
U, V, we have U, 1V, for w-a.e. n. Hence, for w—a.e. n, there is a hierarchically quasiconvex
subspace of X' that is uniformly quasimedian quasi-isometric to Fy,, x Fy, lying uniformly
close to Py, and Py,. Taking ultralimits gives Fy x Fy < Cone”(X), as required by
(this product consists of admissible points by essentially the proof of Proposition .

Finally, assume (), i.e. every wall in W(Fy) = Wy crosses every wall in W(Fv) = Wy
(the equalities are from Corollary .

Let (U,)n and (Vy,), be legal sequences representing U, V. We will argue very similarly
to the proof of Claim [18|to show that U, LV, for w-a.e. n, i.e. ULV, as required.

Choose walls H, © whose colours are respectively U, V. By , the walls fz, v cross. Choose
a median rectangle (a,b,c,d) in Cone”(X) so that © separates {a,b} from {c,d} and h
separates {a,d} from {b,c}. Let x,y be the gates of a,b on Fy and let w,z be the gates
of a,d on Fy, and then replace a,b,c,d by the gates of x,y,w,z on the convex hull of
the original median rectangle (so that we have the configuration from Figure . Apply
Lemma[29.2 to see that (Uy,) € max Rel((zy), (y5)) and hence (Uy) € max Rel((ay), (by)) and
similarly (V) € maxRel((ay), (dy,)). Arguing as in the proof of Claim |18 now shows that
U, 1V, for w-a.e. n, as required. O

Lemma 29.5. The map Col : W — §T is a finite-depth poset-colouring satisfying the
tangible filter condition.

Proof. By definition, Col(W) = §¥. Tangibility and finite depth are inherited from Col :
W — §“.

We now verify that Col : W — F% satisfies the conditions from Definition Condition
holds since passing from F* to §F did not change Wy for any U € §F. The same
reasoning verifies condition (II).

Verifying Definition : Let U,V € §. Suppose that A is an inseparable set of
walls such that Col(A) = U,V and fio(H.4) > 0.

Since Col : W — F* is a poset-colouring, there exists a family {W;};c; of elements of F*
such that

e W, U,V foralliel;
o fio(HanHw,) >0foralliel;
e up to a measure-0 set, Ha < | J,.; Hw,-

We choose the W; to be nest—minimal, in the same sense as in the proof of the proof of
Lemma @ if, for some i € I, there exists a set {W/ }; such that W = W; for all k& and
{Witier—giy U {W,} satisfies the above listed properties, we replace W; by {W}}. Finite
complexity ensures we can choose {W;} so that no such replacements are possible.

We claim that each such W; € 7. Fix i € I. Choose x,y € Cone®(X) such that

fio(Ha N Hw, n H(x,y)) > 0.

By taking gates, we can assume that x,y lie in Fw, © Pw,, where Fw, < huy(Fv).

We say that x,y are W;-replaceable if there exist {W/ }; such that each W} &= W;, and
fio(H 4 NHwy, NH(x,y)) > 0 for all k, and, up to a measure-0 set, H4 nH(x,y) is contained

Our minimality assumption implies that x,y can be chosen as above so that they are not
W ,—replaceable.

If x,y are not W;—replaceable, then by Lemma @, we have Col(fl) = W,; for each
heW(x,y).
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For each h € W(x,y), let I; be the image of F o1y under the gate map to I(x,y) c Fw,.

Since h crosses [}, the latter is a nontrivial closed convex subspace.

If some @ € W(x,y) does not cross I; for any Col(h) = W;, then W; = Col(#) and so
W, € §7, as required.

Assume that this does not hold, so that every @ € W(x,y) crosses I; for some Col(h) &
W,. Let {W}. be the set of elements Col(h) = W; with h € W(x,y). We will show that
{W/}, witness W;-replaceability of x,y, which is a contradiction.

~

First, we argue that {W/ } has at most countably many elements. Indeed, fix W) = C ol(h)
and let X, X be the gates of x,y on [;.

Since median intervals in Cone“ (X) are ultralimits of coarse median intervals in X', we can
choose representatives (), (Yn), (Zn), (n) of X, y, X,y with Z,, g, in the coarse median inter-
val from x,, to y, for w—a.e. n. Considering the cubical approximation (Proposition of
this coarse median interval shows that Rel((Z,), (g,)) < Rel((zy), (yn)). On the other hand,
letting (W)})) be a legal sequence representing W/, we have that (W) € maxRel((Zy), (gn))
(by taking gates on Fyy; and using Lemma M

Hence W/, is represented by a legal sequence (W})) € Rel((zy), (yn)). Now, for any suffi-
ciently large M (in terms of the HHS structure on X) and each n, the set Relys(xn, yn) is
finite by Lemma @, so there are only countably many possibilities for (W},) and hence for

Let {W7} be the set of W/_for which fio(Hw; nH(x,y)nHa) > 0. Since HanH(x,y) =
U Han HW% and the union has only countably many terms, we have, up to a measure—(
set, that

Hoa N H(x,Y) CUHAm%WZ,
4

and thus x,y is a W;—replaceable pair, giving our contradiction.

Verification of Definition : This follows verbatim from the proof of the corre-
sponding part of the proof of Lemma [28.8, once we observe that, by the previous part of the
present proof, the nest-minimal sets {U;} and {V} from Lemma @ lie in . O

Now we make a real cubing and analyse the relations on its index set.

By Theorem Cone” (X), with the metric D and the median p, is median-preservingly
isometric to an R-cubing (Cone®(X),§Y). By construction, the nesting relation in the real
cubing structure is the relation = on §¢ from Section

We now check that the same holds for orthogonality (and hence transversality):

Lemma 29.6. Let U,V € §F. Then ULV, in the sense of Section|27, if and only if ULV
in the R-cubing (Cone® (X),FT).

Proof. This lemma is the reason why we restricted the codomain. It follows immediately from
Lemma @ Indeed, suppose that U,V € §F are orthogonal in the real cubing structure
from Theorem Then there exist closed convex subspaces A, B, respectively parallel to
Fy, Fv, such that the convex hull of A U B is A x B. The lemma now implies that ULV
in the sense of Section [27] (i.e. in the ultralimit sense). The converse follows from the same
lemma. O

Thus the relations =, L, d on §* from Section extend the relations on §§ from the
R—cubing structure.

For each U € §* — §%, we can associate a real tree 7*U consisting of a single point.
Define my and py; in the only possible way for such U.

For U € §° —§7 and V € §¢ with UnV or U &= V, we let pg = my(Fy). The
fact that my (Fuy) is a single point follows from Definition , applied to the colouring
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Col : W — §%, and the fact that U is not in the image of the colouring. Indeed, this shows
that for any x,y € hyv(Fu), there is a set of elements W; & U,V such that each Hw,
contributes positive measure to H(x,y) and the union of the Hw, covers H(x,y) (up to a
null set). So the construction of 7y in the proof of Theorem [5.1implies that mv (x) = v (y),
as required.

For U,V as above with V & U, we have that 7°U is a single point, and the map pg can
be defined arbitrarily.

Adding the "trivial" elements of §* — 7 did not affect finite complexity, since the com-
plexity bounds in §* came from those in §.

Any consistent tuple in £ (F*) restricts to a consistent tuple in ¢1(F7). Conversely, since
T°*U is a single point when U ¢ §F, any consistent tuple in £;(FF) extends uniquely to a
consistent tuple in ¢1(§*). The fact that 7°U is a point for U ¢ §F also means that the
bounded geodesic image property for consistent tuples in £;(FY) passes to consistent tuples
in 41(F%).

We therefore have the following more specific statement of Theorem [26.3

Corollary 29.7. Let (X,§) be a hierarchically hyperbolic space. Then any asymptotic cone
Cone”(X) admits a R—cubing structure (Cone“ X, F*), where

e the relations =, L, i are as in Section [27;
e the R—trees and projections are as provided by Theorem[5.1, or they are single points
and trivial projections.

Moreover, this real cubing has nonempty products.
Furthermore, if § has wedges and clean containers, so does §*°, by Lemma|27.5

Proof. The only thing remaining to be verified is the nonempty products property. For
elements U € S:r, this holds because of Theorem @ Let Ue § . Let Fy be the subspace
defined above in terms of ultralimits. Then Fy is nonempty (since U is represented by a legal
sequence), so fix x € Fy. Let Ve § and suppose that VAU or UZ V. If V e {3’;, then by
definition pY = my(x). Otherwise, T*V is a single point, and p¥ = 7y (x) automatically.
Hence, by Definition (X,3") has nonempty products. O

Geometrically, the above R—cubing structure is identical to the one from Theorem [5.1
except formally we have taken its product with a point. This was just because it will be
more convenient later to work with all of §% than to discard the elements of F° — §F —
which depend a priori on the rescaling — everywhere.

Remark 29.8 (my surjectivity on the ultralimits Py and Fy). Let U € §7. Represent U by
a legal sequence (U,) and let Py = lim,, Py, , so that Py = Fy x Ey, where Fy = lim,, Fy,, .
Recall that W(Fy) = Wy, essentially by the definition of Col. Hence, as we saw before,
Fy (the ultralimit) is a representative of the parallelism class of closed convex subspaces
associated to the filter oy from the proof of Theorem (these spaces were also called
Fy in that proof, and there is no ambiguity because any Fy in the sense of the proof of
Theorem is parallel to a subspace Fy < Py arising as above as an ultralimit). By
construction, my : Cone”(X) — T°U is surjective and factors through the gate map to
(anything parallel to) Fy. Hence the restriction of 7y to Fy and to Py is surjective. For
U € §° — §7, the same conclusion holds just because 7°U is a point. O

30. HOMOGENEITY OF THE REAL CUBING IN THE HHG CASE

Let (G,§) be a hierarchically hyperbolic group. Let Cone”(G) be an asymptotic cone
with scaling sequence (ji, )n, ultrafilter w, and, without loss of generality, observation point

(1>n =1
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Let (Cone”(G),§*) be the R—cubing provided by Theorem [26.3, so that the initial metric
dconew () and the R-cubing metric D on Cone”(() are bilipschitz-equivalent.

Recall that G* = lim,, G, the group of sequences (g,), in G up to the ultrafilter w, with
multiplication and inversion defined pointwise. Note that G* is independent of the rescaling,
but depends on w. We also recall the admissible subgroup G, < G*.

Lemma 30.1. The action of G, on (Cone*(X),D, ) is an action by median-preserving
1sometries.

Proof. Let g,h,k € Cone*(G) and let a € G¥,. Let (gn)n, (hn)n, (kn)n be admissible se-
quences representing g, h, k respectively, and let (a,), be a sequence representing a. Let
U € §% be represented by the legal sequence (Up,)y,.

Fix n. Then by Definition [10.11] the coarse median of

TanUy, (angn)7 TanUn (anhn); TanUy, (ankn)

is uniformly close to the image under a, : CU, — CU, of the coarse median of
7, (9n), v, (hn), 70, (kn), so by the uniqueness axiom and the definition of the coarse
median on G, left-multiplication by a, coarsely preserves the coarse median. Hence
p(ag,ah,ak) = ap(g, h, k), so a is a median homomorphism.

Since a preserves the median and is an isometry of the original metric on the asymptotic
cone, it is also a D—isometry by Proposition [23.3. O

Recall that we have an action of G on § preserving =, I, h. Moreover, if U € § and
g € G, then gPy = P,y, by Remark There is a global constant C' such that for all
r,g € G and U € §, we have, by e.g. Lemma 4.15 of [RST18|, da(9gp, (7),8p,, (97)) < C.
So, if (Up)n is legal in (Cone®(G), 1), then (a,Uy, ), is legal in (Cone¥(G), (an))n. So a € G%,
provides a bijection a : §*° — F% preserving =, L, .

Moreover, for all U € §°, and x € Cone”(G), and a € G},, we have aPy = P,y and
agu(x) = geu(ax). The same is true with Py replaced by any parallel copy Fy < Py, in
the sense that aFy < P,y is a parallel copy F,u and ahy(x) = hau(ax), where the latter
gate is taken in the parallel copy aFy.

Hence, since median isometries preserve the set W of walls, and w crosses Fy only if aw
crosses aFy, which is parallel to F,y, we have:

Lemma 30.2. The poset-colouring Col : W — §* is G ,—equivariant.

So, by Proposition [6.16, the action of G¥; on Cone®(X) is an action by R-cubing auto-
morphisms.
Specifically, for each a € G7;, the R—cubing automorphism data is:

e the isometry a : Cone®(X) — Cone®(X);

e the bijection a : F*° — F* discussed above, which preserves the three relations;

e for each U € §*, an isometry ay : T*U — T*aU which is either the unique isometry
between one-point spaces (when U € §%° — §7), or given by ay(my(x)) = meu(ax)
when U € 7.

By construction, (ab)y = apy o by and a(p¥) = p% whenever U = V or UAV.
Remark 30.3. In summary, if a € G}, then the triple
(a: Cone”(G) — Cone”(G),a: §° - F°,{au : U e F°})

satisfies all the conditions from the definition of a 1-morphism (Definition [£.30). O
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31. LOCAL STRUCTURE OF Cone*(Q)

We now discuss the local real cubing structure of Cone®(G).

Let (G,§) be an HHG. Fix x € Cone”(G). Recall the definition of the local R-cubing
(Cone” (G)x[TL) from Section
(1) FL is the set of U € F* such that for all V € §* with V = U or VAU, we have

py = v (X).
(2) Cone”(G)x is the set of y € Cone”(G) such that my(x) # mu(y) only if U e FF.

Choose a € G* such that al = x. Recall that a induces a 1-morphism of R-cubings from
(Cone”(G),F*) to (Cone”(G),F*), denoted (a, I, {av}), where a : Cone”(G) — Cone?(G)
is an isometry, I, : §° — F* is a bijection preserving =, L, M, and each ay : 7T°U —
T°1,(U) is an isometry. Also, (a1, I;1, {ag;'}) is an inverse for the above 1-morphism, and
is again a 1-morphism.

By Remark @, the bijection I, restricts to a bijection I : §7 — F¥ preserving the
nesting, orthogonality, and transversality relations.

31.1. Refining the local structure. Let (G,§) be an HHG with § having the wedge
property and clean containers. Under the following extra assumption, we will refine the local
real cubing structure, by modifying the underlying real trees so that they are universal. This
will be useful in subsequent parts of the paper.

Remark 31.1 (HHG relative to subgroups). We assume in this section that for each U € §,
the subgroup Stabg(U) acts on Py coboundedly. We will revisit this definition in more detail
in Section [35 O

We freely use:
Lemma 31.2. For each U, the group Stabg(U) acts uniformly coboundedly on CU .

Proof. As explained in [BHS19, Section 1|, we can and shall assume that 7y : G — CU is
E—coarsely surjective. So, by, for instance, considering gates, myy : Py — CU is uniformly
coarsely surjective. Since Py uniformly coarse coincides with the Stabg (U )-orbit of gp, (1),
the action of the latter group on CU is cobounded. g

Recall from the previous section that we have shown that each local R-cubing
(Cone” (G)x, §y) is isomorphic to the local R—cubing (Cone®(G)1,FT).

For later purposes, we now show that there is a more convenient R—cubing structure on
Cone“(G)y. Specifically, for each U € §%, represented by a legal sequence (g,U), g, €
G, U € §, it will be convenient to know that the R—tree 7°U has isometry type independent
of everything except the cardinality of the Gromov boundary of the hyperbolic space CU.
One way to do this is to show that 7°U is a universal R—tree of the appropriate valence.
However, as constructed, it is not true in general that 7°U is complete.

This is because of the following phenomenon: consider a (D, D)-hierarchy ray v in G
that starts at 1, projects close to an unbounded geodesic ray in CS (recall that S € § is
the E—maximal element), and spends arbitrarily large amounts of time in standard product
regions Py, U & S. Let v be the geodesic in Cone”(G) arising as the ultralimit of ~. It is
possible to choose 7 so that « projects to a copy of [0,1) in 7°S that cannot be extended to
a geodesic [0, 1].

On the other hand, such a « cannot lie in Cone¥(G)1, because it necessarily has nontrivial
intersection with product regions Py that do not contain 1. In other words, ng is not
surjective on the local real cubing. So, we should be using a better R—cubing structure on
Cone”(G)1, in which each 7°U is replaced by the R—tree im 7u|conew (@), -

This motivates the following construction.
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Definition 31.3 (Smaller R-trees for the local structure). Let x € Cone¥(G). Let §x be
defined as before, i.e. it is the set of U € §* such that pg = my(x) whenever V € F®
satisfies U V or VAU.

Again, let be the set of y € Cone*(G) such that my(x) # my(y) implies
U € §. For cach U € §, let [LU = my(Cone” (G)x).

Let my : Cone®(G)x — LU be the restriction of my to Cone®(G)x.

Given U,V € §Z with UhV or U £V, let pU = my(x), which coincides with the original
definition. O

Lemma 31.4. Cone*(G)x is closed and conver in Cone”(G) in the sense of Definition[{.17
In particular, LU is a closed subtree of T*U for all U € §%, and whenever U,V € §¥ satisfy
UV, the map pg 2 T*V — T°U restricts to a map LV — LU, after possibly redefining
it in an arbitrary way on my (X) = pg,

Proof. We first check convexity. Let y,z € Cone*(G)x. Let a € Cone®(G) be arbitrary. Let
n = u(y,za).

IfVeF®—3FL, then my(y) = mv(z) = my(x). Since my takes geodesics to geodesics,
and n lies on a geodesic from y to z, we have my(n) = mv(x), so n € Cone®(G)x. This
proves convexity, and hence connectedness of LU, since 7y is a median homomorphism.

Restricting py}: Suppose that U,V € 2 satisfy U & V. We define p;(mv(x)) to be an
arbitrary point in £U.

For any other 7y (y) € LV — with y lying, without loss of generality, in Cone“(G)x —
we have by definition that pj(mv(y)) = mu(y), which lies in LU by our choice of y (which
was justified by the definition of £V and the bounded geodesic image property).

LU is closed in CU: Lemma [31.5 below will show that LU is complete, which immedi-
ately implies that it is closed in 7°U. This completes the proof. O

Lemma 31.5. For each U € §L, the R—tree LU is complete.

Proof. Suppose that LU is not complete, and let LU be its completion. By [MNO92, Theo-
rem 1.11] (see also [AB8T7]), LU — LU is a set of valence-1 points in £U, which we aim to
show is empty. Toward a contradiction, let p € LU — LU be a valence-1 point. Let a be a
geodesic in £U based at p and representing the unique direction at p. Then « contains a
sequence in LU converging to p, so since LU is connected, there is an isometric embedding
7 :[0,¢) — LU such that y(t) > p ast — e.

For each n € N, choose p,, € im~ such that Dy(pn,p) < 1/n. Choose x,, € Cone“(G)x
such that 7y (x,) = pn. By replacing each x,, with hy(x,), we can assume that x,x,, lie in
a common parallel copy Fy.

This does not change the fact that x,, € Cone”(G)x.

Let m,n € N and suppose that V € §* satisfies Dy (X5, %X;,) > 0. If VAU or U & V|
then 7y (x,) = mv(x1), so V£ U or VLU. But our choice of x,,x,, € Fy rules out the
latter possibility.

If V © U, then since x,, X, € Cone”(G)x, we have mv(x,) = mv(Xm) = mv(x) unless
V e §L. All such V have the property that 7y(x) = p¥.

Now, by bounded geodesic image, pg must lie on v between p,,pmn. For sufficiently
large m,n, this means that there are no such V. Hence D(x,,X,;) = Duy(xy,Xy,) — 0 as
m,n — 0. Since Cone”(G) is complete, there exists y € Cone*(G) such that x, — y as
n — oo.

By continuity of 7y, we have my(x,) — my(y) € 7°U.

Now, since Fy is closed, y € Fy. So, by bounded geodesic image, y € Cone“(G)x,
because the same was true for each x,. Hence my(y) € LU. Thus (pn), has a limit in LU,
contradicting our choice of p. Hence LU is complete. O
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Corollary 31.6. The pair (Cone”(G)1,87), with the R—trees LU, U € §7, is a local R-
cubing. Moreover, choosing a € G* such that x = al, the 1-morphism (a, I,, {au}) restricts
to an invertible 1-morphism (Cone*(G)1,87) — (Cone”(G)x, Ty ) whose inverse is a 1-
morphism.

By construction, each my : Cone”(G)x — LU,U € §Y is surjective, so Cone¥(G)x tis
exactly the set of points in HUES’;‘S LU that lie at finite £1—distance from x and satisfy the

consistency equations from Definition ..

Proof. Lemma[31.4]and Lemma[4.23|prove that (Cone”(G)x, %), with the R—trees LU, U €
§% and projections from Definition @, is an R—cubing. The last assertion is immediate
since each my : Cone?(G)x — LU is surjective by definition.

So, it remains to check the assertion about morphisms. We just need to check that if
a € G¥, takes 1 to x, then for each U € §7°, the isometry ay : T°U — T°*I,(U) takes
7y (Cone”(G))1) to 7, u)(Cone”(G)x). But since 77, (y)yoa = ay o7y, it suffices to observe
from the definitions that a takes Cone“(G)1 to Cone”(G)x. O

Now we come to the reason for preferring LU over 7°U.

Definition 31.7 (Universal R-tree). Let u be a cardinal. A universal p—tree is an R-tree 7°
such that any R—tree of valence bounded by u isometrically embeds in 7°, and the valency
of T* at every point is p. (The wvalency of p € C is the cardinality of the set of connected
components of C — {p}, or, equivalently, the cardinality of the space of directions in C at p;
see e.g. Definition 11.15 in [DK18] for the definition of the space of directions). O

Dyubina-Polterovich explicitly constructed a universal u—tree 7 (1), showed that its isome-
try group acts transitively, and any complete R—tree with valence p at every point is isometric
to T (u) (Theorem 1.1 of [DPO1]).

Proposition 31.8 (Universality of LU). Let (G,§) be an HHG relative to subgroups, with
§ having the wedge property and clean containers. Let Cone”(G) be an asymptotic cone of
G and let (Cone® (@), §®) be the R—cubing structure from Theorem[26.5 Let x € Cone®(G)
and let (Cone® (G)x, §¥) be the local R-cubing from Corollary[51.6)

Let U € §§ and let (gn)n be an admissible sequence such that (gnU)y is a legal sequence
representing U, where U € §. Then one of the following holds:

e CU is bounded, and LU is a single point, i.e. a universal 0—tree.

e CU is 2—ended, and LU is isometric to R, i.e. a universal 2—tree.

e [0CU| = 2% and LU is isometric to the complete homogeneous R—tree with valence
280 at each point.

Proof. By Theorem 1.1 in [DP01], it suffices to check that LU is complete and has the valence
at each point demanded by the statement. Completeness was proven in Lemma So, we
just need to compute the valencies of points in LU.

Setup: Let (g,U), be as in the statement. By Corollary we can assume for simplicity
that x =1 and ¢, = 1 for w-a.e. n.

Three sub-cases: Since (G,§) is an HHG relative to subgroups, we have that Stabg(U)
acts coboundedly on Py and hence acts coboundedly on CU, by Lemma [31.2. By Gromov’s
classification of actions on hyperbolic spaces [Gro87| and coboundedness, one of the following
three possibilities holds:

e CU is bounded. There are two ways to proceed; we give both. In either case, we
can assume that Stabg(U) is infinite, for otherwise Py is bounded, whence Py, and
hence LU, is a single point (see Remark , as required.

First method: consider the action of Stabg(U) on the HHS (F{;, §v), where §y is
the set of V = U, and Fy; is an HHS quasi-isometric to Fyy (the modification is to
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ensure that Stabg(U) actually acts on F;; see Section 2.2 of [DHS20]). We would
like to apply Proposition 9.2 of [DHS17| to this action. As noted in [DHS20]|, the
properness hypothesis in [DHS17, Proposition 9.2] is only used to know that 0F}; is
compact, but this follows from the fact that Fy; is proper (as a subspace of G) and the
map (F};,§) — (Fy,T), which is an isometry on each CV, induces a homeomorphism
of boundaries. Proposition 9.2 of [DHS17| now provides V' = U such that Stabg(U)
virtually stabilises V', and Fy; coarsely coincides with Py. So any wall separating
points in Fy has colour nested in V or V. Hence 7°U is a single point, i.e. a
universal O—tree.

Second method: this is almost the same, except we use results of Petyt-Spriano,
which depend on elementary arguments, instead of the above result of Durham-
Hagen-Sisto using stationary measures on HHS boundaries. Since Stabg(U) acts
properly and coboundedly on the hierarchically quasiconvex (hence quasigeodesic)
space Py, it is finitely generated. Theorem 5.1 of [PS20] provides a nonempty
set of pairwise orthogonal V;,...,V;, stabilised setwise by Stabq(U), such that
7y, (Stabg(U)) is unbounded for each i and every V' such that my (Stabg(U)) is un-
bounded is nested in some V;. Now, for all 7, we cannot have V;hU or U & V;
since Stabg(U)—orbits in CV; would then coarsely concide with the bounded set p%.
So, V; £ U or V; LU for all i. Hence Py coarsely coincides with the image of the
quasimedian quasi-isometric embedding [ [, Fy, — G. As above, it follows that 7°U,
and hence LU, is a single point.

e CU is 2-ended, and the action of Stabg(U) on CU is lineal, i.e. any orbit coarsely
coincides with the orbit of (h) for some h € Stabg(U) acting loxodromically. Now,
if V = U, then by Proposition @, 7y (Py) has diameter bounded independently of
V. Hence Fy; is two-ended, and therefore Fy is isometric to R, and if V © U, then
Fv is a single point. Hence 7my : Fy — CU is an isometry, and its image is LU.
Thus LU = R in this case.

e The action of Stabg(U) on CU is of general type: every element is elliptic or loxo-
dromic, and there exists a pair h, h’ of loxodromics such that the limit set of (h) is
disjoint from that of (h’). We analyse this case below.

Lower bound on valence in the general-type case: Since Stabg(U) has a general-
type action on CU, there is a free subgroup @ < Stabg(U) of rank 2 such that the Q-orbit
of (1) is quasiconvex in CU and, when @ is equipped with the word-metric coming from,
say, a free basis, the map @ — CU given by ¢ — 7y7(q) is a (L, L)—quasi-isometric embedding
for some L.

Note that for V € § such that U & V or UAV, we have that my(Q) uniformly coarsely
concides with p}; since @ = Stabg(U). We next produce a constant C' such that, if V & U,
then 7y (@) has diameter at most C. Indeed, if not then for all N there exist x,y € @ such
that dy(z,y) > N for some V = U. Bounded geodesic image (Definition [10.1.(7)) implies
that there exist 2/,3 € @ such that dy (z,2') < F and dy(y,vy') < E, sody(2',y') > N -2F,
and dU(xla Pg% dU(y/7 Pg) <L

So, if no such C' exists, then for all N there exists V & U and x,y € ) such that

e dy(z,y) > N, and
o dy(z,y) < A4E.

Then dg(z,y) < L(4E + L), since 7y : Q — CU is an (L, L)—quasi-isometric embedding.
Since the inclusion @ — G is (L1, L1)—coarsely lipschitz, where L; just depends on the word
metrics on @ and G, we have that dg(z,y) < Lidg(x,y) < L1L(4E + L) + Ly, which is
independent of z and y. Finally, since my is (E, E)—coarsely lipschitz by Definition we
get dy(z,y) < EL1L(4E+ L) + E(L; + 1), which is a contradiction if N is sufficiently large.
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Hence there exists C' such that diam(my(Q)) < C whenever V & U. (This argument is
essentially due to Abbott-Behrstock-Durham [ABD21| Corollary 6.2].)

Fix a parallel copy Fy; and let Q be the image of ) under the gate map to Fyy. Since Q is
coarsely contained in Py, the gate map changes the coordinate of each ¢ € @ by more than a
uniformly bounded amount only in various CV with V_LU. In particular, my/(Q) and 7y(Q)
coarsely coincide.

So, the map f : @ — G given by including @ into G and then taking the gate to Fy
is a quasi-isometric embedding (by the distance formula). Since @ — G — CU is a quasi-
isometric embedding in a hyperbolic space, it is quasimedian, and hence f is quasimedian.
We now have that 7 (Q) has uniformly bounded diameter for V # U.

Hence we have a bilipschitz median homomorphism ¢ : Cone¥(Q)) — Cone”(G) such that
for all V # U, the subspace hy(imq) of Fy is a single point, and 1 € imq. Hence, for all
y € im(q) and all V # U, no wall separating 1,y has colour V. Hence 7y : imq — T7°U
is an isometric embedding, and a median homomorphism, and its image lies in LU. Since
Cone”(Q) is a universal 2%0-tree [DP01], my(im¢) has valence 2% at every point, and in
particular the valence of 77(1) in LU is at least 280,

Now let x € Cone*(G)1. Choose a € G* such that aU = U and a1l = gy(x). This is
possible since Stabg(U) acts on Py coboundedly.

Then 7y (a(imq)) = a(ry(imq)) is an isometrically embedded universal 280—tree in CU
containing 7y (x).

Moreover, if y € a(imgq), and V € §% satisfies my(x) # mv(y), then V = U. Hence, if
V satisfies v (y) # mv (1), then 1y (1) # mv(x), so V = U. Hence my(y) € LU. Thus
ny(aim q) € LU, which therefore has valence at least 280 at 7 (x).

Upper bound on valence in the general-type case: Since G is finitely generated, it
is countable, so Cone*(G) has cardinality 2%°. Since 7ty : Cone®(G) — T°*U is surjective,
|7*U| < 2%. Hence every point in 7*U has valence at most 2%. O

Remark 31.9. In fact, the same argument shows that 7°U is a homogeneous R-tree with
the right valence at every point, for all U € §°. So we prefer LU over 7°U for exactly two
reasons: first 7y : Cone® (G)1 — LU is surjective, and second, LU is complete. ]

32. NEGLIGIBLE SEQUENCES AND THE LOCAL INDEX SET

Let (G, §) be an HHG such that § has the wedge property and clean containers, and,
as in Remark @, Stabg(U) acts coboundedly on Py for each U € §. Fix a non-principal
ultrafilter w on N and a rescaling sequence (j, ),. Let Cone”(G) be the associated asymptotic
cone of G.

Equip Cone¥(G) with the median g, the median metric D, and the R—cubing structure
(Cone”(G),§*) from Section We now analyse the local R—cubing (Cone“(G)1,§7) from
Section [31l

Choose a finite set @ c § with the property that G - § = §. Such a set exists by the
definition of an HHG. In later sections, we will put additional constraints on §, but this is
all we need at the moment.

Note that the inclusion § < § induces an injection 3 - 3® sending each U € 3 to the
constant sequence whose terms are all U.

Lemma 32.1. Letting §° denote the index set for the R—cubing structure on Cone”(G)
constructed in Section @, we have §° = G, - §.

Proof. The inclusion G¥, - § < §® is clear. Let U € §*, and choose a legal sequence (U,,)
representing U. For each n, choose U,, € § and ¢, € G such that ¢,U, = U,. Since § is
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finite, there exists U € § such that U, = U for w-a.e. n. We need to choose an admissible
sequence (hy,) such that h,U = g,U for w—-a.e. n.

Choose h € Py. Then gyh € g, Py = Py,u. Let z, = gq4,v(1), so that by legality, (2,) is
an admissible sequence.

By coboundedness of the Stabg (U )9"—action on Py, 17, we have a,, € Stabg(U)9" such that
dg(angnh, z,) is bounded independently of n, say by B. By construction, a,(g,U) = g,U.

On the other hand,

da(1, angn) < dG(antha angn) + da(angnh, 2n) + da(zn, 1) < ’h‘ + B +dg(1, zn)a

which is w-a.e. bounded, after rescaling by jn, by legality. Hence (angn) is admissible and
angnU = U, for w-a.e. n. Thus Ue G%,-§. O

Let G7., < G, be the negligible subgroup.

neg

Proposition 32.2. Let U = (gn)nU € F°. Then U € L if and only if there exists (hy)n €
G* g such that h,U = g,U for w-a.e. n.

ne

First we need a lemma. Recall from Sectionthat if (Up,)n is a legal sequence representing
U € §%, then Py is by definition lim,, Py, < Cone“(G). Moreover, with respect to p and
D, we have Py = Fy x Fyi, where Fy and Fy. are ultralimits of (Fy, ), and (Fy1)y
respectively. There is also an intrinsic notion of a product region in an R-cubing, from
Section and the next lemma will show that these two notions coincide in Cone® (G).

Lemma 32.3. Let U € §* and let x € Cone”(G). Then x € Py if and only if mv(x) = pY
whenever UAV or U V.

Proof. Suppose that x € Py. Note that pg = mv(Pu) = mv(x) whenever UhV or U C V.
This is because of how pg was defined: if U,V e §F, then pg = myv(Fy) for any parallel
copy Fy < Py (and these points all coincide), so py = 7y (Py) since Py is the union of
such parallel copies.

If VegF®—3FP, then T°V is a point and my (Py) = py irrespective of whether U € §%.
IfU€eF?—FP and V e 7, then we have py = mv(Fu), again by definition, as required.

This shows that Py = lim,, Py, is contained in the standard product region of U (in the
real cubing sense of Section m

Conversely, suppose that x € Cone®(G) satisfies Tv(x) = py whenever UhV or U & V.

Suppose that x ¢ Py. Let y = gpy (x), so that our assumption ensures that D(x,y) > 0.
Hence there exists V € §% such that Dv(x,y) > 0. Now, if UhV or U & V|, then our other
assumption ensures that Dv(x,y) = 0.

Now, any wall @ in Cone®(G) separating x from y = gp (x) separates x from Py(x),
and consequently Col(w)hU or U & Col(w). Indeed, if V = U, then any wall coloured
V intersects Py because Py contains a parallel copy of Fy. Similarly, if V1 U, then Py
contains a parallel copy of Fy since each Py, coarsely contains a parallel copy of Fy, . Thus
w induces a nontrivial partition of Py and hence cannot separate x,y.

Hence Dy (x,y) > 0 only if VAU or U & V. But for such V, we have my(x) = p¥
v (y). Hence D(x,y) = 0, so x € Py, as required.

o

Proof of Proposition [52.4 Let U € §*. Then we can represent U by a legal sequence (g, )nU,
where U € § and (gn)n € G%;. Now, by the definition of §7° and Lemma [32.3, U € 37 if and
only if 1 € Py. If (gn)n € G}y, then 1 € Py because g, € P i and dg(1, g5)/jn — 0.

neg’
Conversely, if 1 € Py, then (since dconew () and D are bilipschitz—equivalent metrics), we

have dg(1, gnPg)/jn — 0. Let h,, = 9P, ; (1). Fix k € Stabg(U), so that g,k € g, Py = P,

U

Note that g, 'h, € g, 1Pgn(-] = Pg. Also note that k is uniformly close to Py (more precisely,
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the distance can be bounded in terms of the finite set § and independently of n, using that
Stabg (U) acts on Py coboundedly).

Using coboundedness, choose a, € Stabg(U) so that dg(ank, g, h,) < B, where B is
independent of n. So dg(gnank, hy) < B.

Note that gna,U = g,U, 50 (gnan)U = (9,)U = U. Hence, to conclude, we have to show

that (gnan) € G*neg. By the triangle inequality,
dG’(gnanu 1) < dG(Qnanka hn) + dG(hna 1) + dG’(k7 1)
The third term is independent of n, and the first term is bounded by B. So (gna,) € G

neg
provided (hn) € Gyy. Now, since hp, = gp, (1), by [BHS17c, Corollary 1.28], the distance
formula, and the definition of the gate, we have dg(1, g, Pg)/jn — 0 implies dg(1, hy)/jn — 0,
ie. (hn)n € Ghey O

So, we can think of elements of the local grove in Cone”(G) as translates of elements of §
by negligible sequences. We need two more useful facts about §7.

Proposition 32.4. Let U e §{. Then Ule 51

Proof. Let (U,), be a legal sequence representing U. By Lemma @, (Ul)y, is a legal
sequence representing U~

We recall that Py, is uniformly coarsely contained in Py1. Indeed, let V' € § and suppose
that VAU or Ur © V. Then V cannot be nested in U,, (for otherwise it would be orthogonal
to Unl) and V cannot be orthogonal to U,, for otherwise it would be nested in Unl. Hence

VAU, or U, = V. Thus pg" and pg# are both well-defined bounded sets in CV. By

Lemmal(15.10 p‘[f" and pg’% coarsely coincide for such V. Hence each point in Py, is uniformly
close to Ppy1, as required.

Since Py, is uniformly coarsely contained in Pyi, we have Py < Pyi. Now, by
Lemma @, we have U € §7 if and only if 1 € Py. But the latter condition implies
that 1 € Py, so Ut € §7. O

Proposition 32.5. Let U,V € §7. Then there ezists a unique =-minimal Uv 'V into which
U,V are nested, and U v V € §7.

Proof. Let (Uy,), and (V,,), be legal sequences representing U,V respectively. For each n,
let W,, be the unique E-—minimal element of § into which U,, and V,, are both nested. That
such an element exists is shown by Berlai and Robbio in [BR20al, Section 3|, where it is
shown that there exist T7',..., T, where ¢, is bounded in terms of the complexity, such
that W, = Aj", T]* has the required property, where /\ is defined by applying the wedge
property iteratively.

Hence we can apply Lemma @ boundedly many times to see that (W), is legal, and
hence represents an element W € §°. We let U v V = W. By construction, U,V & W. If
there exists W’ such that U,V & W' = W, then we could choose a legal sequence (W),
such that U,,V, & W) & W, for w-a.e. n, contradicting the definition of W,,. Hence
W is E-minimal with the property that U,V E W, and uniqueness of W follows from
Lemma 27.3

It remains to prove that W € §7°, provided U,V € §7°. In view of Lemma 32.3, it suffices
to show that 1 € Pw. By the same lemma, we can assume that 1 € Py n Pv.

By construction, Py = Fy x Fy1, and a similar equality holds for V, so we can choose
parallel copies Fy, Fv that both contain 1.

Choose a parallel copy Fw containing gp, (1). Note that if gpy, (1) = 1 (equivalently,
1€ Pw), then W € §7°, by Lemma @, and we are done.
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Choose parallel copies Fyy, Fy, of Fy, Fy such that F{;,Fy, € Fw. Let a = gF/U(l) and
let b = gp;, (1). By convexity of Fw, we have x(1,a,b) = p € Fw.

If T satisfies mp(1) # 7w (u), then T separates a and b from 1, and hence T LU, V. Since
(Uv V)t = UL AV we have TLW. Hence, since a € Pw, so is 1. Hence, by Lemma@,
W e 37. 0

Remark 32.6. Although we do not require it later, a similar argument shows that U AV €
§7 whenever that wedge is defined and U,V € §7. O

33. SUMMARY OF RESULTS

We summarise the conclusions as follows.

Let (G,§) be an HHG relative to subgroups, as in Remark Let Cone”(G) be an
asymptotic cone of G.

By Theorem [26.3] (Cone*(G),§®) is an R-cubing, where Cone“(G) is equipped with a
median metric D that is bilipschitz equivalent to dcgnew ()-

For each U € §*, we denote by CU the associated R-tree and by 7y : Cone*(G) — CU
the (surjective) projection.

Each a € G* induces a 1-morphism (a, I, {au}) : Cone*(G) — Cone*(G), where

e a: Cone”(G) — Cone*”(G) is an isometry (for the metric D);

o [, :F® — F*® is a bijection preserving =, A, L;

e for each U € §%, the map ay : CU — CI,(U) is an isometry such that 77, ) ca =
ay o my and pﬁzggg = av(pg) whenever UAV or U V.

Given x € Cone®(G), we denote by F¥ the set of V € F© such that pY; = my(x) whenever
V £ Uor VAhU. We denote by Cone”(G)x the set of y € Cone*(G) such that the V-
coordinates of x,y differ only when V € §¥.

Corollary [31.6 shows that (Cone®(G)x,T¥) is a local R-cubing, and is isomorphic to
(Cone”(G)1,37)-

Given U € §{, we have a subtree LU = 75(Cone”(G)1). The R-trees in the above local
R-cubing structure are the trees LU.

By Proposition we have the following. Let U € §7° and let (g, U),, be a legal sequence
representing it, where U € § and (g,,) is an admissible sequence.

Let a € {0,2,2%0} be the cardinality of the Gromov boundary of the hyperbolic space CU.
Then LU is a complete R—tree with valence « at every point, and is therefore the universal
a—tree.

Finally, under the additional hypothesis that (G,§) has wedges and clean containers,
we get the following. For any finite § < § containing at least one element of each G-
orbit, §7 consists exactly of Greg S, by Proposition @ Also, by Proposition and
Proposition @, the set §7 is closed under joins and orthogonal complements.

We will see below that all of the above conclusions hold when G is one of our main
examples, i.e. the fundamental group of a compact special cube complex, or the mapping
class group of a hyperbolic surface with finite genus and finitely many punctures.

34. © QUESTIONS AND REMARKS

We conclude with some miscellaneous questions and remarks.

34.1. © What happened to large links when we passed to the cone, and the dif-
ference between 7°U and lim,, CU,,. Let (X,§) be a hierarchically hyperbolic space. Let
(Cone* X, %) be the resulting real cubing with Cone®(X’) a (non-principal) asymptotic cone
of X (with the median metric).
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In (X,F), we have the large link axiom: given z,y € X, and a sufficiently large constant
C, there is a bounded-cardinality list of N elements U; & S such that if dy(z,y) > C, then
either U = S or U £ U; for some i, and N is bounded by a linear function of dg(x,y).

We have already seen that the most naive version of the large links axiom does not apply to
real cubings. Specifically, a typical situation is that, for x,y € Cone“(X), there are countably
many U € % such that x,y have distinct projections onto 7°U.

We now discuss some concrete examples, to illustrate the proof of Theorem [26.3 and show
why one should not expect any analogue of large links for the asymptotic cone.

Let Fy = {a,b|) be equipped with the obvious choice of word-metric, and let § consist of
the set of left cosests of {a). So, CF; is the Cayley graph, with each coset in § coned off, and
Cg{a)y is a copy of R.

Let us consider some points in Cone“(F3), where we use the rescaling sequence j, = n
and observation point the constant sequence 1.

First, let

2y = b(a™)b(a™?)b- - - b(a™?™),

where (k) is some nondecreasing sequence of natural numbers. For 0 <1i < k, let
Ai(n) = b(a™)b(a™?)b---b(a™? i a) € 3.

Then for U € §, we have

o dy(l,z,) =0if U # Fy and U # A; for ¢ < ky,
o douy(m) (L 2n) = (kn + 1) +n Y277, and
° dAi(n)(lvxn) =n-27%

So, a priori, if U € §* has Dy(1,x) > 0, then U is represented by a sequence (A))n for
some f : N — N, where f(n) <k, + 1 for each n, or U = S is represented by the constant
sequence Fy. Specifically, for (Ag(,))n = U as above, we have

Dy(1,x) = lim2~/(™,

so we are interested in those f(n) for which this is positive. But this would imply that f(n)
is bounded, so since it takes integer values, up to w, we have that f(n) is constant.

So Y uyes Du(l,x) = >r 27" = 2. Now let’s vary ki,.

First, consider the case where k,, = |y/n]. In this case, dconew(r)(1,%) = 2. Indeed, for
each i > 0, we have a non-zero term coming from (A;(n)), contributing 27°.

So Dg(1,x) = 0. In particular, the points p§ with Dy(1,x) > 0 all coincide.

Next, consider the case where k, = n. Then dconew(r,)(1,%) = 3, but again the total
contribution from properly nested elements of §* is 2, so Dg(1,x) =3 — 2 = 1. Again, the
relevant points p§ are all at 7g(1). On the other hand, there exist U such that Dy(1,x) = 0
and pg # ms(1).

This indicates that in (Cone® (F),F*), one can’t expect some sort of "infinitary large link
axiom". For example, in each of the two choices of (), for each € > 0, we have exactly the
same number of U & S for which Dy(1,x) > €, and those lengths are all independent of
x. But for the two choices of x, the length in 7°S is different (and can obviously be chosen
arbitrarily with small modifications to (xy,)y).

Already in this example there are points y € Cone® (F3) where the relevant pg points are
distributed more interestingly in [rg(1),7s(y)]. For example, we leave as an exercise for
the reader to construct y so that doopew(m)(1,¥) = 1 and the set of pISJ with U & S and
Dy(1,y) > 0 correspond to the components of the complement in [0, 1] of a fat Cantor set.
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Relatively simple examples like this also illustrate another point, the difference between
T°S and the corresponding asymptotic cone of CF5. For example, for integral ¢ > 0, let

2= a2 by gn,
Then (2%),, is admissible for each i, and satisfies
dCone“’(Fg)(lv Zi) =1+3- 21_i7

while > ; Du(1,2) = i + 1. So Dg(1,2z') = 2 — 277 and since 2 is a subword of 25"
for each i,n, one can check by a similar computation that (rg(z’)); is Cauchy. But one can
deduce from the fact that (z'); is unbounded in Cone®” (F») that (wg(z')); cannot converge in
T°*S. So 7°S is not complete, but asymptotic cones of CFy are.

Intuitively, this reflects the fact that traveling distance j, in certain directions in CU,,
ending at some 7y, (z,), entails traveling through points pgn for which dy (1, z,) may be
large compared to jp, so the point (7, (x,,)) € lim,(CU,,dy, /jn) is not visible in 7°U. So
in this sense, 7°U contains "less" than lim,, (CUy,dy, /jn)-

However, we saw already that if U (represented by (U,)) satisfies Dy(1,x) > 0, then

(Un) € Rel((1), (z4)), ie.
liUIJIldUn(an) = 0.

It does not follow that lim, dy, (1,2,)/jn > 0. Indeed, in our same Fy example, we can

take
Ty = <b(aﬁ))ﬁ.

Then dconew(m)(1,%) = 1. For any properly nested U, we have Dy(1,x) = 0, since
v/n/n — 0. Hence Dg(1,x) = 1. On the other hand, S is represented by a constant sequence
for which the associated hyperbolic spaces are all CF», in which the distance is 3y/n, which
is unbounded (reflecting that the constant sequence CFj is in Rel((1), (zy))) but sublinear.
So the real tree T*(F3), contains "more" than Cone”(CF5).

So there is no direct relation between Cone“(CF») and the real tree T°*(F3)y, and this
reflects the general situation that there is no direct relationship between lim,, (CUy, dy, /jn)
and 7°U, where (U,,) is a legal sequence representing U € §*.

Finally, although the large link axiom for HHSes is lost when passing to the asymptotic
cone, there is a vestige from this axiom that holds for asymptotic cones of HHSes, namely, for
any x,y € Cone“(x) and any admissible sequences (zy,)n, (Yn)n representing the points corre-
spondingly, the set of maximal relevant elements is finite, see Definition[41.3/and Lemma[41.4.
But the latter is a property of asymptotic cones of HHSes, not a property that can even be
sensibly stated for general real cubings.

34.2. © Py versus the parallel set of Fy. Fix an HHS (X, §) and let (Cone”(X),F%)
be the resulting real cubing structure on an asymptotic cone.

For each U € §%, represented by a legal sequence (U, ), let Py be the standard product
region in the real cubing sense, i.e. the set of x such that myv = pg whenever the pg is
defined and a point.

Let Pg; = lim,, Py, . Although we phrased it for HHGs with clean containers, Lemma [32.3]
says that Py = P{ (the proof only used the HHS structure and the resulting real cubing
structure on the asymptotic cone).

Now, consider Fy = lim,, Fy7,. We have that Fy is also the subspace determined by the
colour U and the associated filter oy, so by the discussion right after Lemma Fy is
also the subspace from Proposition [4.37, and Py = Fy x Ey.
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In particular, letting Para(U) be the union of all closed convex subspaces parallel to Fy,
we have

Py = Py < Para(U).

The subtle difference between Py = P{; and Para(U) initially caused us some cognitive
dissonance, which is resolved by the following proposition.

Proposition 34.1. Let U € §¢. Then Py = Para(U).
Moreover, if U € §° satisfies Py & Para(U), then there exist V € §F and {W;}; < §F
such that

e VIW,; for all i;
e W, = U for all i;
e if x,y € Fy, then dw(x,y) > 0 implies W = W, for some i.

Proof. First assume U € §7 and let F be a closed convex set parallel to Fy. Let F/ be the
image of F under the gate map to Py. Then F’ is a parallel copy of Fy lying in Py, so we
are justified in writing Fy = F’.

Let x,x’ € Fy be distinct. Let y,y’ € F respectively denote the gates in F of x,x’. If
x =y we are done, so suppose not.

Then x,y,y’,x’ is a median rectangle, so every wall in W(x,x’) crosses every wall in
W(x,y), and both associated sets of halfspaces have positive measure.

Let 'V be such that Dy(x,y) > 0. Then Hyv n H(x,y) is an inseparable set of positive
measure.

Apply Definition [3.1} (IV) to find {U;} and {V;} such that

U, = U for all 4, and

V; £V for all j, and

Hu, N H(x,x') has positive measure for each i, and

Hv,; N H(x,y) has positive measure for each j, and

the sets U;Huy, and U;Hy, respectively cover H(x,x’) and Hy n H(x,y), up to null
sets, and

e U, LV; for all 7, .

Now, we cannot have V; = V for all j, because this would imply 7mv(x) = mv(y). So
V1U; for all . On the other hand, any W with mw(x) # 7w (x’) must be nested in some
U;, and hence orthogonal to V. Thus the gate map to Py is an embedding on I(x,x’).
Since x,x’ € Fy were arbitrary, we see that Fy is parallel to some F’ such that there is a
product F/ x Fy/.

Now, U € §¢ by hypothesis, and V € §¢ since T*V is nontrivial. So, by Lemma @,
the existence of this product implies ULV.

Since this holds for every V on which x,y have different projections, we see that F < Py,
as required.

But by the definition of the gate map to Py, we have either VAU or U & V, a contra-
diction. Hence V cannot exist, i.e. F/ < Py. This proves the first assertion.

The above argument also verified the "moreover" part of the statement. O

We hope this proposition will also make the reader feel better when combined with the
reminder that we only showed that orthogonality in the poset-colouring sense coincides with
orthogonality in the ultralimit sense on §F. Given U,V € §%*, it is possible that e.g. U,
and V,, are transverse for w—a.e. n, but Fy, , Fy;, nonetheless form a coarse product and so
the cone contains Fy x Fy. In this case — which one can easily visualise in an HHS — any
unbounded sequences of distance formula terms for points in Fy;,, have to be properly nested
in U, and orthogonal to any unbounded sequence of distance formula terms for points in
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Fy;,, or vice versa. Lemma @ then says that no wall has colour, say, U, and so either U
or V is not in §¢.

A related caveat: having U € §° — §7 implies 7°U is trivial, but the converse need
not hold. It is possible to make examples where, say, the set of walls crossing Fy but not
crossing Fy for any properly nested V is nonempty but has measure 0. So, in character-
ising orthogonality between such elements (Lemma @ and similar arguments above), we
really used extra information only available in HHS structures of asymptotic cones, namely
Lemma (which says that U appears in max Rel((zy,), (yn)) for some sequences) and the
fact that orthogonality can be detected in the space (X, §), as in the argument for Claim

34.3. © Simplification in the presence of wedges and clean containers. Theorem|[26.3|
and Corollary are considerably simplified for an HHS (X, §) with wedges and clean

containers. In particular, considerations about max-relevant sets can be removed. Roughly:

e The colour of a wall is well-defined just because, if it crosses Fy and Fy, then it
crosses Fy.v, in view of Lemma @ So we can define Col as before.

e Verifying Definition . is simplified since, given U, V and some positive-measure
set crossing both Fy, Fy, all such walls cross Fy.v, and we can take {U A V} as
the set required by the definition.

e The key point is that Col(h)LCol(9) if and only if h,d cross. This involves an
argument like the one for Claim except simplified by the fact that we have joins
and clean containers in the HHS index set. Here is the only place where one needs to
argue using sequences in §. As above, we end up in a situation where Relps(an, by,)
is nonempty and has elements orthogonal to those in Relys(ay,dy), but this implies
that the join of the first set is orthogonal to the join of the second set, which removes
the need for considering "max-relevant" sets.

e Verifying Definition is an application of the previous application of the pre-
vious point, along with the existence of joins and clean containers.

e As usual, we have to verify that, for elements in the image of Col, the two notions of
orthogonality agree, and this is again enabled by the equivalence of crossing of walls
with orthogonality (in the ultralimit sense) of their colours.

So the argument is morally similar, but simplified at every stage.

34.4. © Structure of the real trees associated to elements of the index set of
an asymptotic cone. As we indicated in the previous section, see also Section [31.1, in
general, the real tree associated to U € % is not a universal tree as, in particular, it is
not complete. However, it does have some type of universality and completeness with the
following adjustments.

The 2%0—universal real tree can be characterised by the germ of directions at any point.
More precisely, it is a complete, contractible, geodesic metric space such that for each point
in the space, the space of directions is a sheaf of 28 real lines, i.e. 280 copies of the real line
identified all of them at 0.

One can generalise the germ of directions, from considering real lines, to considering open
intervals containing 0. More precisely, let I, = (—a, @), a € (0,00] and let L be a sheaf of
2% intervals I, for all a € (0, 0] identified at 0.

The real line is homeomorphic to each interval I,. Indeed, it is routine to check that the
maps [ : I, — Rdefined as f,(z) = z/(a—|z|) and f), : R — I, defined as f/(x) = x/(a+|z]|)
are homeomorphisms and inverse to each other. We can then induce the metric on the real
line to I, i.e. given z,y € I,, we define d,(z,y) to be the distance d(f(x), f(y)) between
f(z) and f(y) in the real line. We thus have two distance maps on I, the distance d induced
as a subspace of R and the distance d,, induced via the homeomorphism with the real line.
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Notice that sequences converging to a are Cauchy with respect to d but not with respect to
dq and so I, is not complete with respect to the distance d but it is complete with respect
to the distance d.

The universal punctured real tree is defined as a complete (with respect to the metric d,),
contractible, geodesic metric space (the metric is induced by d) such that for each point in
the space, the germ of directions at each point is L. More precisely, the metric on the space
is induced by the metric of the intervals as subspaces of R but the notion of Cauchy sequence
is relative to the metric d, (the interval I, as subspace of the universal punctured real tree
is complete).

One can then show that the real trees associated to elements of the index set in the
asymptotic cone of an HHG relative to subgroups are either universal or universal punctured
real trees. Furthermore, since L contains a sheaf of 280 lines, one can show that the universal
real tree is a subspace of the universal punctured one and by vice-versa, since any real tree
is a subspace of the universal one.

34.5. © Asymptotically R—cubing and asymptotically CAT(0) groups. Hyperbolic
groups are characterised as the class of finitely generated groups whose (non-principal) as-
ymptotic cones are all real trees.

Following this approach, one can consider the class of finitely generated groups G such
that every non-principal asymptotic cone Cone®(G) is bilipschitz equivalent to a real cubing.
We call this class of groups asymptotically real cubical.

In [Karll], Kar introduced and studied the class of asymptotically CAT(0) groups, namely
those groups acting geometrically on spaces, all of whose non-principal asymptotic cones are
CAT(0) spaces. In |[Bowl6b|, Bowditch examines groups, all of whose asymptotic cones are
bilipschitz equivalent to CAT(0) spaces. Bowditch shows that spaces whose asymptotic cones
are bilipschitz equivalent to finite-rank median metric spaces have this property. The class
considered by Kar is contained in the class considered by Bowditch.

Bowditch’s results combine with the fact that any HHS is a finite-rank coarse median
space (Lemma to show that if (X, F) is an HHS, then any asymptotic cone Cone”(X’)
is bilipschitz equivalent to a CAT(0) space. In fact, as shown by Theorem @, the asymptotic
cone of an HHS is bilipschitz equivalent to a real cubing, that is, HHS are asymptotically
real cubical.

Now, if G is a group whose asymptotic cones are all bilipschitz equivalent to CAT(0) spaces,
then G has various nice properties, some of which have been established for HHGs by other
means. The fact that asymptotic cones of hierarchically hyperbolic spaces are contractible,
along with some other homological propertes, are also discussed in [BHS19].

e (G is of type Fyp. Indeed, our assumptions imply that all asymptotic cones of G are
contractible, and we apply [Ril02} 2.6.D].

e (G has solvable word problem, by a result of Dru tu [Dru02]. When G is hierarchically
hyperbolic, or, more generally, coarse median, the stronger property of satisfying a
quadratic isoperimetric inequality was proved in [Bow13, [BHS19].

If G is in the class considered by Kar, then moreover G has finitely many conjugacy
classes of finite subgroups, and every quasi-isometrically embedded nilpotent group is virtu-
ally abelian [Karll]. When G is an HHG, the former statement is proved by other means
in [HHP20], and the latter statement can be strengthened: any finitely generated polcyclic
subgroup is quasi-isometrically embedded and virtually abelian [HHP20)].

A priori, being asymptotically real cubical is a stronger property than having all asymptotic
cones bilipschitz to CAT(0) spaces, which motivates a vague question:
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Question 34.2. Find useful group-theoretic consequences of being asymptotically real-
cubical that do not follow from having all asymptotic cones bilipschitz equivalent to CAT(0)
spaces.

There should be asymptotically CAT(0) groups that are not asymptotically real cubical.
Indeed, as a candidate, consider the R-completion of the infinitely generated RAAG defined
in the example ie. G =GR,

On the other hand, it follows from our results that hierarchically hyperbolic groups are
asymptotically real cubical. This brings to the question:

Question 34.3. Are there finitely generated groups all of whose asymptotic cones are real
cubings and their Cayley graphs are not HHS?

Note that there are asymptotically real cubical groups that are not HHGs, which is why
we phrased the question how we did. Indeed, the (3,3, 3)-triangle group is quasi-isometric
to Z?2, and hence every asymptotic cone is bilipschitz equivalent to an asymptotic cone of Z2,
and Z? is an HHS and hence asymptotically real cubical. But the (3,3,3)triangle group is
not an HHG [PS20].

Finally, it would be interesting to know if hierarchically hyperbolic groups are actually
asymptotically CAT(0) in Kar’s stronger sense:

Question 34.4. Let (G, §) be a hierarchically hyperbolic group. When does G act properly
and coboundedly on a space X such that every asymptotic cone of X is CAT(O)?E

9n personal communication from Alessandro Sisto, we have learned that it is likely that such an X exists
provided § is colourable, using methods similar to those in [DMS20].
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LisT oF HHS CONSTANTS

By = B1(Mjy): Realisation constant, page [122]

By = Bo(M): Threshold on non-relevance, see Proposition [16.4] page [123

Bt = Bg“(z,U, g): Bigset constant, see Lemma [19.2, page [131

B&t = Bfl(z U, g): Bigset constant, see Lemma [19.2, page [131

C: Quasi-isomtetry constant of the cubical approximation, see Proposition [16.1, page
119

Cop: constant (depending only on E) so that for all W € § and z,y, z,€ G, the point
mw (p(z,y, 2)) lies Cp—close to any geodesic joining myw (a), mw (b) whenever a,b €
{x,y, z} are distinct, page @

x: complexity of HHS, page [L05

E: large links HHS constant, page [105

K: Constant so that my is (K, K)—coarsely lipschitz, where W € §, page @;

ko: HHS constant, see Definition [10.1, page [104

k*: a function, depending only on the HHS constants, such that each Py, Ey, Fy is
k*—hierarchically quasiconvex, page m

A: large links HHS constant, see Definition page [105

My, M7: Distance threshold constants of the cubical approximations, see Proposition
[16.1, page [L19

fo: constant depending only on the HHS, such that for all 8 > 6, there is a function
ko such that Hy(A) is kp—hierarchically quasiconvex for any A, page m

&: HHS constant, see Definition page [104
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GLOSSARY OF NOTATION

Big(g): the set of U € § such that 7y ((g)-x) is unbounded in CU (for some, and hence
any, x € X). @

Col : W — (F°,E): poset-colouring from the set of walls to a partially ordered set.
Cone”(G)x: the set of y € Cone®(G) such that my(x) # my(y) implies U € §%. 166
x: complexity of HHS. [105

X : the bound on lengths of =—chains and cardinalities of pairwise—L sets in § .

D: metric making (Cone“(X), D, u) a finite-rank complete connected geodesic median
metric space. [143

doo: metric on Cone® (X). [141

dx: the metric on the R—cubing X.

Ey: the set of tuples (pV)VGSJU € HVG% CV that are E—consistent. |114,
E'%: factor of the product region in the real cubing, F{’J X E{’J is median-preserving
isometric to Py.

Fy: the set of tuples (pv)veg, € HVESU CV that are E—consistent. E

F{;: factor of the product region in the real cubing, F{; x Ef; is median-preserving
isometric to Py.

§7: the image of the poset-colouring map. @

$%: the set of U € § such that for all V € §* with V & U or VAU, we have
pY = 7y (x). [165

F*: the set of equivalence classes of legal sequences in §. [145

§: index set of a hierarchically hyperbolic space. [104

3: a finite set F — §F with the property that G- § = §. @

3§ : index set of the R—cubing structure.

G+ subgroup of G* consisting of admissible sequences. @
Geqt subgroup of G* and G, consisting of negligible sequences. @

G*: ultrapower of G. [T41
g: X — Y: gate map.

H(Y): set of halfspaces associated to walls crossing Y.
h = {h,h*}: wall; halfspace and its dual.

h: halfspace.

H: set of all halfspaces.

Hull®*(A): convex hull of A.

Hyp(Y): the set of hyperplanes in Y.

I(a,b): median interval between two points.

k>: a function, depending only on the HHS constants, such that each Py, Fy, Fy is
k> —hierarchically quasiconvex. |115

Lab(h(i,U)): label of the hyperplane. (121
Level(U): level of an element U € §. [110
LU: the set my(Cone”(G)x). |166

p: the median operator on Cone®”(X). [142
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puw: the median operator on 7*W coming from the R-tree metric (the map mw takes

[t to pw).
w: the median operator on X, the coarse median operator on an HHG. 112

C: the relation of nesting on § or F.

w: non-principal ultrafilter on N.
L the relation of orthogonality on § or . @

Py product region in the HHS.

Py: product region in the real cubing.

mw: the natural projection HUES' T°U — T°*W, generally restricted to a map X —
T*W. 47

<: partial order on relevant elements. (110

Relc(x,y): the set of V e § with dy (z,y) = C.

pv i T*W — T*V: the map that is defined whenever V.= W (the bounded geodesic
image condition ensures that py’ is constant on each component of mw (X) — {pvw})-
471

pXV: the point in 7*W associated to V, that exists whenever VAW or V.= W (the
position of p% is constrained by the consistency conditions).

p},/[,: p-sets and maps in HHS. @

su(x,y): s—distance in a median space with poset-colouring.
o 4: filter of halfspaces that contain A.
oy: filter associated to a colour.

CW: the d—hyperbolic geodesic metric spaces associated to W e §. [L04
T*W: the R-tree associated to W e § .

tu(x,y): t—distance in a median space with poset-colouring.

A: the relation of transversality on § or §. @

V: the set of V € Relo(z,y) such that U = V. [109)

Wu: set of walls with colour nested in U.
W: set of all walls. 26]

X(U, V): semialgebraic set defined by a cubical system relative to I(U), I(V).
X: the underlying space of an R—cubing.
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