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A COMBINATORIAL STRUCTURE FOR MANY HIERARCHICALLY

HYPERBOLIC SPACES

MARK HAGEN, GIORGIO MANGIONI, AND ALESSANDRO SISTO

ABSTRACT. The combinatorial hierarchical hyperbolicity criterion is a very useful way
of constructing new hierarchically hyperbolic spaces (HHSs). We show that, conversely,
HHSs satisfying natural assumptions (satisfied, for example, by mapping class groups)
admit a combinatorial HHS structure. This can be useful in constructions of new HHSs,
and also our construction clarifies how to apply the combinatorial HHS criterion to sus-
pected examples. We also uncover connections between HHS notions and lattice theory
notions.

This has nothing to do with links.
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Showing that a given space or group is hierarchically hyperbolic yields a lot of information
about it ([BHS21, HHP23, ANS*19, HHL20, DMS20] is a highly non-exhaustive list), but it
is quite challenging to check the definition directly. To remedy this, a criterion was devised
in [BHMS20| to show that a space is hierarchically hyperbolic, and roughly speaking the
criterion involves checking that a certain simplicial complex has links which are hyperbolic,
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along with some combinatorial conditions. Such a complex is called a combinatorial HHS
structure (see Section 2 for background on combinatorial HHSes). This criterion has proven
useful to show that various spaces and groups are HHS, see [BHMS20, HMS22, HRSS22,
Rus21, DDLS21]. It is natural to wonder whether there is a converse to this, namely
whether every HHS admits a combinatorial HHS structure. We show that is true under
mild assumptions on the HHS, see the theorem below. Besides the intrinsic interest of a
converse statement, we believe that our theorem can be useful in constructing new examples
of HHSs, by introducing a combinatorial structure and then manipulating it; we believe this
could be useful to study quotients, for example, as was done in [BHMS20|. We defer the
precise statements of the additional conditions to Section 3; the reader can find a list of the
conditions and where to find them below, together with a short discussion. For now, we
just mention that the properties hold in many natural examples, including mapping class
groups, see Section 9, and we now state (a stripped down version of) our main theorem:

Theorem 1. Let (Z,8) be a hierarchically hyperbolic space with weak wedges, clean con-
tainers, the orthogonals for mon-split domains property, and dense product regions. Then
there exists a combinatorial HHS (X, W) such that Z is quasi-isometric to W.

Theorem 1 only contains the non-equivariant part of Theorem 3.15, but our constructions
are equivariant in a suitable sense and compatible with the notion of hierarchically hyper-
bolic group, rather than just space, as would be needed for the application to quotients
mentioned above; see Theorem 6.6 for the exact statement.

Our construction also clarifies how to construct, starting with a space or group that one
suspects to be hierarchically hyperbolic, a candidate combinatorial HHS structure for it,
which can then be used to show that the given space or group is indeed HHS. We explain
this in Section 4. We do not know whether the additional conditions we have to impose are
necessary, but we provide an example where our construction fails to yield a combinatorial
HHS structure in the absence of the additional conditions, in Section 10. In fact, we
uncovered intriguing connections with lattice theory that arise from these considerations, see
in particular Remark 10.20. Roughly, modifying an HHS structure to ensure the additional
condition reduces to a problem in lattice theory, see Question 10.21. To highlight the
connections with lattice theory, we note that the notion of an ortholattice is very closely
related to those of wedges and clean containers (which have appeared in the HHS literature
repeatedly, see e.g. [BR20, ABD21, CRHK22, Rus22, AB23, Hag23|), see Definition 7.10.
To conclude this subsection, we suggest that a possible application of the aforementioned
construction could be showing that mapping class groups of finite type non-orientable sur-
faces are hierarchically hyperbolic.

A true converse. A second aim of this paper is to clarify how various conditions on an
HHS structure relate to each other and to properties of combinatorial HHS structure. As
this is fairly technical we do not make precise statements in the introduction, but we refer
the reader to Section 7 and in particular Lemma 7.4; we believe this can also be useful for
applications. An especially striking output of this study is the following “true converse”
theorem which provides an actual equivalence between combinatorial HHS structures and
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HHS structures, each satisfying natural conditions (see list below for where to find each
condition).

Theorem 2. Let (Z£,8) be a hierarchically hyperbolic space. Then Z has wedges, clean
containers and the strong orthogonal property if and only if there exists a CHHS (X, W)
with simplicial wedges and simplicial containers such that W is quasi-isometric to Z.

We note that the standard HHS structure on mapping class groups does not satisfy the
stronger conditions above, but we construct a different structure which does in Section 9.
We now state this result, together with the aforementioned result on the standard HHS
structure, which in fact confirms the speculations from [BHMS20, Subsection 1.6].

The following combines Theorem 9.8 and Theorem 9.9 (which in fact give combinatorial
HHG structures):

Theorem 3. Let S be obtained from a closed connected oriented surface of finite genus by
deleting finitely many points and open discs.

There exists a combinatorial HHS structure (X, W) for MCG(S), where X is the blow-up
of the curve graph of S, obtained by replacing every curve with the cone over its annular
curve graph.

Moreover, there exists a (different) combinatorial HHS structure for MCG(S) with simplicial
wedges and simplicial containers.

As a final note on mapping class groups, we sumamrise in the following remark the connec-
tion between our construction and clean markings:

Remark 1 (Relation with clean markings). The reader familiar with Masur and Minsky’s
graph of complete clean markings from [MMOO| will notice that the combinatorial HHS
structure for MCG(S) that our main Theorem provides has the same flavour of the marking
graph. Indeed, a mazximal simplex of the graph X from Definition 4.2 will correspond to a
choice of a mazimal collection of disjoint annuli Ay, ..., Ay (that is, a pants decomposition),
plus a choice of a point x; inside the annular curve graph associated to A; for every i =
1,...,k (that is, a transversal for every curve in the pants decomposition). Hence a mazimal
simplex corresponds to a complete marking. Moreover, some of the W-edges we define in
Definition 4.10 correspond to elementary moves. Indeed, let ¥, A < X be two mazximal
simplices, and suppose that their supports differ by a single curve (say, the support of X
is a« U P and the support of A is B U P, for some almost-maximal collection of pairwise
disjoint curves P). Then these simplices are W-adjacent if and only if:

e « and B are close in the curve graph of the subsurface of complexity 1 cut out by P;
e « projects close to the coordinate prescribed by A in the annular curve graph of 3;
e the same holds with o and B swapped.

In other words, our W—edges detect when one replaces a curve with one of its transversals,
and this corresponds to one of the elementary moves from [MMOO].
Additional conditions. The additional conditions on an HHS structure in Theorems 1,2
are stated precisely in the following places:

e Wedges are defined in Property 3.1.
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Clean Containers are defined in Property 3.4.

Dense product regions are defined in Property 3.10.

Orthogonals for non-split domains are defined in Property (3.9).

Strong orthogonal property is defined in Property 7.1 (and see also Remark 10.20).

Wedges and clean containers are standard assumptions on an HHS structure introduced in
[BR20| and [ABD21] respectively — wedges make the nesting poset into a lattice, while
clean containers make it into a complemented poset. Dense product regions is a cobound-
edness assumption automatically satisfied by HHGs. Strong orthogonality corresponds to
orthomodularity of the nesting lattice, and is the source of the lattice-theoretic question
mentioned earlier. It is one way of verifying orthogonals for non-split domains, which is re-
ally the main enabling assumption in Theorem 3.15 and is modelled on the role of boundary
annuli in the HHS structure on mapping class groups.

The additional conditions on a combinatorial HHS are:

e Simplicial wedges are defined in Definition 8.1.
e Simplicial containers are defined in Definition 8.2.

These conditions are very natural properties one might hope for from a simplicial complex
along the lines that containment of links of simplices corresponds to reverse containment
of the simplices.

Outline of the paper. Sections 1 and 2 contain all relevant definitions and facts about
(combinatorial) HHS. Section 3 gathers the hypotheses of the main result of this paper,
which is Theorem 3.15 and states that a HHS (Z,&) with some additional assumption
is quasi-isometric to a combinatorial HHS. The actual construction of the candidate com-
binatorial HHS (X,V) is in Section 4 (see in particular Definitions 4.2 and 4.10). The
quasi-isometry f: W — Z is constructed in Definition 4.11, and maps any maximal sim-
plex of X to one of its realisation points (in the sense of the partial realisation axiom
(8)).

In Section 5 we verify that, under the assumptions from Section 3, the pair (X, W) is a
combinatorial HHS and f is a quasi-isometry (see Assumption 5.1 and Theorem 5.2). In
Section 6 we show that our construction is equivariant, meaning that whenever a group G
acts on (Z,6) by hieromorphisms then it also acts on (X, W) (see Theorem 6.2). Then
we use this fact to prove that, whenever a group acts metrically properly and coboundedly
on (Z,6) and some other mild assumptions hold, then G has a structure of hierarchically
hyperbolic group coming from the action on a combinatorial HHS (see Theorem 6.6).

In Section 7 we present some more “natural” hypotheses that one could require on (Z,8),
and we show how they relate to each other and to the ones from Section 3. In Section 8 we
establish an equivalence between strong orthogonality properties on the HHS structure of
(Z,6) and some strong intersection properties on the links of the associated combinatorial
HHS (X, W) (see Theorem 8.3).

In Section 9 we apply our results to the mapping class group of a compact orientable surface,
with the usual HHS structure (the one from, e.g., [BHS19, Section 11]), showing that it
admits a combinatorial HHS structure whose underlying graph is a certain blow-up of the
curve graph. This confirms the speculations from [BHMS20, Subsection 1.6]. Moreover, we
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show that Theorem 8.3 applies if one adds to the index set some non-essential subsurfaces,
including pairs of pants (see Theorem 9.9).

Finally, in Section 10 we illustrate the necessity of the hypotheses of Theorem 3.15, by
providing a counterexample of an unbounded space Z for which the construction from
Section 4 can only yield a bounded CHHS. Remarkably, Z can be chosen to be a CAT(0)
cube complex with a factor system, with the usual HHS structure (i.e. the one from
[BHS17b, Remark 13.2]). Then we speculate on which conditions on the factor system
could allow one to modify the HHS structure in order to satisfy our hypotheses.

Acknowledgements. We thank Carolyn Abbott and Alexandre Martin for helpful discus-
sions. MH thanks Montserrat Casals-Ruiz for being a strong proponent of the “orthogonal
set” viewpoint during work on [CRHK22|, which influenced the ideas in Section 10 here.

1. BACKGROUND ON HIERARCHICAL HYPERBOLICITY

1.1. Axioms. We recall from [BHS19| the definition of a hierarchically hyperbolic space.

Definition 1.1 (HHS). The g—quasigeodesic space (Z,dz) is a hierarchically hyperbolic
space if there exists E > 0, called the HHS constant, an index set &, whose elements will
be referred to as domains, and a set {CU | U € &} of E-hyperbolic spaces (CU,drs), called
coordinate spaces, such that the following conditions are satisfied:

(1) (Projections.) Thereisaset {ry : Z — 2°U | U € &} of projections sending points
in Z to sets of diameter bounded by F in the various CU € &. Moreover, for all
U € &, the coarse map 7y is (E, E)—coarsely Lipschitz and 7y (2) is E—quasiconvex
in CU.

(2) (Nesting.) & is equipped with a partial order &, and either & = & or & contains
a unique E—maximal element, denoted by S. When V £ U, we say V is nested in U.
For each U € &, we denote by &y the set of V € & such that V = U. Moreover, for
all U,V € & with V & U there is a specified subset p}; = CU with diamey (py;) < E.
There is also a projection p‘lf : CU — 2¢V. (The similarity in notation is justified
by viewing pg as a coarsely constant map CV — 26U )

(3) (Orthogonality.) G has a symmetric and anti-reflexive relation called orthogonal-
ity: we write ULV when U,V are orthogonal. Also, whenever V = U and U_1LW,
we require that V LW. We require that for each T' € & and each U € &7 such that
{Ve&r | VLIU} # &, there exists W € & — {T'}, which we call a container for
U inside T', so that whenever VLU and V & T, we have V = W. Finally, if ULV,
then U,V are not =—comparable.

(4) (Transversality and consistency.) If U,V € & are not orthogonal and neither
is nested in the other, then we say U,V are transverse, denoted UMV . In this case
there are sets p‘,j € CU and pg c CV, each of diameter at most F and satisfying:

min {dy (7v:(2), p7), dv (v (2), p7)} < E
for all z e Z.
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For U,V € & satisfying V £ U and for all z € Z, we have:

min {dU(TFU(Z), pg),diamcv(ﬂv(z) U pg(WU(Z)))} < FE.

The preceding two inequalities are the consistency inequalities for points in Z.
Finally, if U = V, then dW(p%7 pK/) < FE whenever W € & satisfies either V & W
or VAW and W4U.

(5) (Finite complexity.) There exists n > 0, the complezity of Z (with respect to
S), so that any set of pairwise-=—comparable elements has cardinality at most n.

(6) (Large links.) Let U € &, let 2,2’ € Z and let N = d,, (ny(2), 7 (2")). Then there
exists {Ti}i—1,..,\n] S ©&u — {U} such that, for any domain T" € &y — {U}, either
T € Sy, for some 7, or dp(mp(z), 7r(2')) < E. Also, dU(ﬂ'U(Z’),pgi) < N for each i.

(7) (Bounded geodesic image.) For all U € G, all V e &y — {U}, and all geodesics
7 of CU, either diamey (p{(v)) < E or v n Ng(py;) # &.

(8) (Partial realisation.) Let {V;} be a family of pairwise orthogonal elements of
&, and let p; € my,(2) < CV;. Then there exists z € Z, which we call a partial
realisation point for the family, so that:

e dy;(2,p;) < E for all j,

o for each j and each V € & with V; £ V, we have dy (%, p“;]) < FE, and

e for each j and each V € & with V;hV, we have dv(z,p“;j) < E.
(9) (Uniqueness.) For each k > 0, there exists 6, = 6,(x) such that if z,y € Z and
dz(z,y) = 0y, then there exists V € & such that dy (z,y) = k.

We often refer to &, together with the nesting and orthogonality relations, and the pro-
jections as a hierarchically hyperbolic structure for the space Z. Observe that Z is hierar-
chically hyperbolic with respect to & = (J, i.e., hierarchically hyperbolic of complexity 0,
if and only if Z is bounded. Similarly, Z is hierarchically hyperbolic of complexity 1 with
respect to the index set & = {Z}, if and only if Z is hyperbolic.

Notation 1.2. Where it will not cause confusion, given U € &, we will often suppress the
projection map 7y when writing distances in CU, i.e., given z,y € Z and p € CU we write
dy(z,y) for dy(my(x), 7y (y)) and dy(z, p) for dy(my(x),p). Note that when we measure
distance between a pair of sets (typically both of bounded diameter) we are taking the
minimum distance between the two sets. Given A ¢ Z and U € & we set

mu(A) = | mv(a).

agA

1.2. Useful facts about HHS. We now recall results from [BHS19] that will be useful
later on.

Lemma 1.3 (|[DHS17, Lemma 1.5]). Let U, V,W € & satisfying ULV, and U, VAW, and
W £ U, V. Then dyv(pl, ply) < 2E.

Remark 1.4 (Normalisation). As argued in [BHS19, Remark 1.3|, it is always possible
to assume that the HHS structure is normalised, that is, for every U € & the projection
7wy ¢ 2 — CU is uniformly coarsely surjective. In order to do so, one roughly replaces every
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CU with 7y (Z2), which is itself hyperbolic since it is quasiconvex in CU, and then replaces
every projection py; with the composition py o py;, where py : CU — 7y (Z) is the coarse
closest point retraction. The resulting space, which is again hierarchically hyperbolic, has
the same set of domains & with the same relations of nesting and orthogonality.

Assumption 1.5. In view of the remark above, we will always assume that the HHS
structures we consider are normalised.

Definition 1.6 (Consistent tuple). Let £ > 0 and let (by)yes € [ [eg 2V be a tuple such
that for each U € &, the U—coordinate by has diameter < k. Then (by)pes is k—consistent
if for all V,W € &, we have

min{dv(bv,py),dw(bvai‘//v)} S K
whenever VAW and

min{dw (bw, ply), diamy (by U p{¥ (bw))} < &
whenever V - W.

The following is [BHS19, Theorem 3.1]:

Theorem 1.7 (Realisation). Let (Z,8) be a hierarchically hyperbolic space. Then for each
k =1, there exists 0 = (k) so that, for any k—consistent tuple (by)yes, there exists v € Z
such that dy (x,by) < 6 for all Ve .

Observe that the uniqueness axiom (Definition (9)) implies that the realisation point x for
(bv)ues provided by Theorem 1.7 is coarsely unique.

Definition 1.8 (Product regions and factors). Fix a constant x > 0. For any domain U,
let i be the set of k-consistent tuples for U, that is, all tuples (by)yes, that satisfy the
consistency inequalities. Similarly, one can define Ey as the set of k-consistent tuples of
the form (bV)VJ_U~

Now let Py = Fy x By, which we call the product region associated to U. By the realisation
Theorem 1.7 there is a coarsely well-defined map ¢ : Py — Z. If we fix e € Fy, the image of
the factor Fy x {e}, which we will still denote by F; when the dependence on e is irrelevant.
Hence we can metrise Fyy by endowing it with the subspace metric, which makes it a sub-
HHS of Z with domain set Sy = {V € G|V & U}. Two parallel copies Fyy x {e} and
Fy x {e'} are quasi-isometric (see e.g. [DHS20, Section 2.2] for more details), thus the
metric structure on Fy is well-defined up to quasi-isometry.

A similar argument holds for Ey. For more details on product regions, see [CRHK22,
Section 15].

It will often be convenient to think of Fy; as an abstract space, instead of as a subspace
of Z. This way, whenever V = U, we have a (non-unique) embedding Fy — Fy, given as
follows. Let E‘[f be the set of k-consistent tuples of the form

(bW )Weu, w LV, Viel,... ks
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and choose e € Eg Then define a map Fyy — Fyr by sending a tuple (yw )wey to the tuple
(xw)weu, defined as follows:

yw if W EV;
Tw = Vo .
py VW or VAW, ey if WLV,

In other word, we extend the tuple y “naturally” whenever we have a well-defined projection
from V to W, and then we choose consistent coordinates whenever W1 V. This kind of
arguments will be recurrent throughout the paper.

Definition 1.9 (Relative product regions). Fix a constant x > 0, and let U, Vj,...,V, € &
be such that V; £ U and V; LVj for every 4,5 < k. The relative product region associated
to V1,...,V, inside U is defined as

P{Um =Fy, x...x Fy, x E?VZ_} c Fy,
where E{UVZ } is the set of x-consistent tuples of the form

(bw)weu, wLv; vi=1,... k-
With a slight abuse of notation, whenever the ambient domain U is clear we will drop the
superscript and refer to the relative product region simply as Ppy;;.

The following is [BHS19, Theorem 4.5

Theorem 1.10 (Distance formula). Let (Z, &) be a hierarchically hyperbolic space. Then
there exists sg such that for all s = sg, there exist C, K so that for all x,y € Z,

d(SL‘, y) =K.c Z {{dU(xvy)}}s :
Ue&

(The notation {A} 5 denotes the quantity which is A if A > B and 0 otherwise. The
notation A =) y B means A < AB + Xand B <A+ \)

1.3. Groups acting on HHS. First we need to discuss which group actions we allow on
a hierarchically hyperbolic space. The following are some definitions from [BHS19| and
[BHMS20]:

Definition 1.11 (Automorphism). Let (Z,&) be a HHS. An automorphism consists of a
map g : Z — Z, a bijection ¢! : & — & preserving nesting and orthogonality, and, for
each U € &, an isometry ¢°(U) : CU — C(¢g*(U)) for which the following two diagrams
commute for all U,V € & such that U = V or UV
z—2 4z
T l”gﬁ(v)

cv L9 et )
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and
cu L9, e(gt )

#
Jﬂg . ipgugg))
cv L9 et v))

Notice that g must be a uniform quasi-isometry by the distance formula, Theorem 1.10.
Whenever it will not cause ambiguity, we will abuse notation by dropping the superscripts
and just calling all maps g.

We say that two automorphisms g, ¢’ are equivalent, and we write g ~ ¢, if g = (¢')f and
g°(U) = (¢')°(U) for each U € &. Given an automorphism g, a quasi-inverse g for g is an
automorphism with ¢ = (¢f)~! and such that, for every U € &, g°(U) = ¢°(U)~!. Since
the composition of two automorphisms is an automorphism, the set of equivalence classes
of automorphisms forms a group, denoted Aut(S).

Definition 1.12. A finitely generated group G acts on a HHS (Z, &) by automorphisms
if there is a homomorphism G — Aut(S).

Remark 1.13. The original definition of an automorphism, which is [BHS19, Definition
1.20], only requires the diagrams from Definition 1.11 to coarsely commute (with uniform
constants). However, as shown in [DHS20, Section 2.1], if G acts on (Z,8) in the sense
of [BHS19| then one can ensure that the diagrams genuinely commute by perturbing every
my : Z — CU and every pg, whenever the quantity is defined, by a uniformly bounded
amount. This way, up to a single initial change in the constant E, the HHS structure
is unaffected, meaning that the new structure has the same domain set & with the same
relations and the same coordinate spaces.

Definition 1.14 (HHG). A finitely generated group G is hierarchically hyperbolic if there
exists a hierarchically hyperbolic space (£,8) and an action G — Aut(&) so that the
uniform quasi-action of G on Z is metrically proper and cobounded and & contains finitely
many G-orbits. Then we can equip G with a HHS structure, whose domains and coordinate
spaces are the same as the ones for Z and whose projections are obtained by precomposing
the projections for (Z,&) with the G-equivariant quasi-isometry G — Z given by the
Milnor-Svarc lemma.

2. COMBINATORIAL HHSs

In this section we recall the definition of a combinatorial HHS and its hierarchically hyper-
bolic structure, as first introduced in [BHMS20).

2.1. Basic definitions. Let X be a simplicial graph.

Definition 2.1 (Induced subgraph). Given a subset S € X(©) of the set of vertices of X,
the subgraph spanned by S is the complete subgraph of X with vertex set .S.
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Definition 2.2 (Join, link, star). Given disjoint simplices A, A" of X, we let A x A’ denote
the simplex spanned by A© U A/O)if it exists.

For each simplex A, the link Lk(A) is the union of all simplices ¥ of X such that X nA = ¢
and X+ A is a simplex of X. Observe that Lk(A) = ¢ if and only if A is a maximal simplex.
The star of A is Star(A) := Lk(A) x A, i.e. the union of all simplices of X that contain A.

Definition 2.3 (X—graph, W-augmented graph). An X —graph is a graph VW whose vertex
set is the set of all maximal simplices of X.
For a simplicial graph X and an X-graph W, the W-augmented graph X" is the graph
defined as follows:

e the O-skeleton of XtV is X(©);

o if v,we X© are adjacent in X, then they are adjacent in X",

e if two vertices in W are adjacent, then we consider o, p, the associated maximal

simplices of X, and in X" we connect each vertex of o to each vertex of p.

We equip W with the usual path-metric, in which each edge has unit length, and do the
same for X V.

2.2. HHS structure. [BHMS20, Theorem 1.18| states that, under some assumptions on
the pair (X, W), W has the hierarchically hyperbolic structure described below. First we
define what will be the index set.

Definition 2.4 (Equivalence between simplices, saturation). For A, A’ simplices of X, we

write A ~ A’ to mean Lk(A) = Lk(A’). We denote the ~—equivalence class of A by [A].
Let Sat(A) denote the set of vertices v € X for which there exists a simplex A’ of X such
that ve A’ and A’ ~ A, i.e.

(0)
Sat(A) = | ] &
A’e[A]
We denote by & the set of ~—classes of non-maximal simplices in X.

Next we introduce the candidate coordinate spaces:

Definition 2.5 (Complement, link subgraph). Let YW be an X—graph. For each simplex
A of X, let YA be the subgraph of X induced by the set (X*+")(©) —Sat(A) of vertices.
Let C(A) be the induced subgraph of Ya spanned by Lk(A)(©). Note that C(A) = C(A’)
whenever A ~ A’. (We emphasise that we are taking links in X, not in X™", and then
considering the subgraphs of YA induced by those links.)

The following is the equivalent of the finite complexity Axiom (5) in the combinatorial
framework:

Definition 2.6 (Finite complexity). The simplicial complex X has finite complezity if there
exists n € N so that any chain Lk(A;) < --- & Lk(4A;), where each A; is a simplex of X,
has length at most n; the minimal such n is the complexity of X.

The following is the main definition from [BHMS20]:
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Definition 2.7 (Combinatorial HHS). A combinatorial HHS (X, W) consists of a simplicial
graph X and an X—graph W satisfying the following conditions:

(1) X has complexity n < 400, as in Definition 2.6;

(2) There is a constant § so that for each non-maximal simplex A, the subgraph C(A)
is 0—hyperbolic and (4, §)—quasi-isometrically embedded in YA, where Ya is as in
Definition 2.5;

(3) Whenever A and ¥ are non-maximal simplices for which there exists a non-maximal
simplex I' such that Lk(I") < Lk(A) nLk(X), and diam(C(I")) > J, then there exists
a simplex II which extends X such that Lk(II) < Lk(A), and all I" as above satisfy
Lk(T") < Lk(II);

(4) If v,w are distinct non-adjacent vertices of Lk(A), for some simplex A of X, con-
tained in W-adjacent maximal simplices, then they are contained in W-adjacent
simplices of the form A x 3.

In order to complete the HHS structure on W we are left to define nesting and orthogonality
relations on &, and projections between coordinate spaces.

Definition 2.8 (Nesting, orthogonality, transversality, complexity). Let X be a simplicial
graph. Let A, A’ be non-maximal simplices of X. Then:

e [A] = [A'] if Lk(A) < Lk(A");

o [A]L[A'] if Lk(A') < Lk(Lk(A)).
If [A] and [A'] are neither L-related nor E-related, we write [A]A[A].
Note that [F] is the unique E—maximal ~—class of simplices in X and that = is a partial
ordering on the set of ~—classes of simplices in X. Notice that the simplicial graph X has
finite complexity, in the sense of Definition 2.6, if there exists n € N so that any E—chain
has length at most n; the minimal such n is the complexity of X.

Remark 2.9. The definition of L says that any vertex in the link of A’ is connected to
any vertex in the link of A.

One might be tempted to think of nesting as being equivalent to inclusion of simplices, but
this only works in one direction, namely:

Remark 2.10. Let A, A’ be simplices of X. If A € A/| then [A'] = [A].

Notice that Definition 2.7.(3) can be rephrased as follows:
e Whenever A and ¥ are non-maximal simplices for which there exists a non-maximal
simplex I' such that [I'] £ [A], [I'] © [¥], and diam(C(I")) > §, then there exists

a simplex IT which extends ¥ such that [II] £ [A] and all [T'] as above satisfy
(I = 1],
Our next goal is to define projections from W to C([A]) for [A] € &.

Definition 2.11 (Projections). Let (X, W,d,n) be a combinatorial HHS.
Fix [A] € & and define a map 7} : W — 2C(1AD as follows. Let

R (1)
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be the coarse closest point projection, i.e.

p(x) = {y € C([A]) : dy, (2, y) < dys(z,C([A]) + 1}
Suppose that w is a vertex of W, so w corresponds to a unique simplex ¥, of X. Now,
[BHMS20, Lemma 1.15] states that the intersection ¥, nYa is non-empty and has diameter
at most 1. Define
Ta)(w) = p(Ew N Ya).
We have thus defined 7a) : WO — 2CUAD  If y,w e W are joined by an edge e of W, then
Y, Yy are joined by edges in X Y, and we let

maj(e) = map(v) U may(w).
Now let [A],[A’] € & satisfy [A]A[A'] or [A'] = [A]. Let

Pl = p(Sat(A) A Ya),
where p : YA — C([A]) is coarse closest-point projection.
Let [A] & [A']. Let pf3] : C([A']) = C([A]) be defined as follows. On C([A]) A Ya, it is
the restriction of p to C([A’]) n Ya. Otherwise, it takes the value .
We are finally ready to state the main theorem of [BHMS20]:

Theorem 2.12 (HHS structures for X—graphs). Let (X, W) be a combinatorial HHS. Let &
be as in Definition 2.4, define nesting and orthogonality relations on & as in Definition 2.8,
let the associated hyperbolic spaces be as in Definition 2.7, and define projections as in
Definition 2.11.

Then (W, &) is a hierarchically hyperbolic space, and the HHS constants only depend on
d,n as in Definition 2.7.

The aim of the present paper is, morally, to establish a “converse” of the previous result,
by showing that any HHS satisfying reasonable hypotheses has a hierarchically hyperbolic
structure that comes from a combinatorial HHS.

3. COMBINATORIAL HYPERBOLICITY FROM HIERARCHICAL HYPERBOLICITY

Fix a hierarchically hyperbolic space (Z,&). The goal of this section is to construct a
combinatorial HHS structure (X, Z) for the space Z. The exact statement is Theorem 3.15,
which will require the additional mild assumptions on (Z,&) that we now present.

3.1. (Weak) wedges. The following property was first articulated in [BR20]. It is a fairly
natural requirement, satisfied by all reasonable naturally occurring examples.

Property 3.1 (Wedges). The HHS (Z,8) has wedges if for all U,V € &, one of the
following holds:
e there exists a unique E—maximal 7' € & such that T E U and T' = V, and we write
T=UAV;
e there does not exist 7' € & with T' = U and T £ V, and we formally write
UAV =@
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What we will actually need is the following weak version of the wedge property:

Property 3.2 (Weak wedges). The HHS (2, &) has weak wedges if for all U,V € &, one
of the following holds:

(1) there exists a T' € & such that T = U, T' = V and whenever W € & is a C-minimal
domain that is nested in both U and V then W = T,
(2) there does not exist T'e & with 7= U and T' £ V.

Remark 3.3. If (Z,8) has weak wedges and U,V € & share a common nested domain
then we can find a unique 7 satisfying the properties of Item (1) which is =-minimal among
all domains with the same properties. To do so, let T = {T}};c; be the family of domains
which are nested in both U and V' and that contain every =-minimal domain W which is
nested in both U and V. For any two T;,T; € T there exists some T' = T;, T' © T} which
satisfies the properties in Definition 3.2 for 7T; and T;. Hence T' is again an element of
T, since it must contain all =-minimal domains which are nested in both 7; and T} (and
therefore in both U and V). Now, there must be an element T' € T which is nested in
all elements of the family, because otherwise, by the previous observation, we could find
an infinite chain 77 22 T5 22 ... which would contradict the finite complexity of the HHS.
Hence, we say that T is the weak wedge of U and V, and denote it by U Apin V.

3.2. Clean containers. The second main property was first articulated in [ABD21], and
is still very natural.

Property 3.4 (Clean containers). The HHS (Z, &) has clean containers if the following
holds. Let T' € &. Suppose that U = T and

A={Ve&: VT VIU} # &.

Then there exists U% = T, which we call the orthogonal complement of U inside T, such
that U%J_U and V £ U% for each V € A.

In other words, the clean container property states that there exists a unique container for
U inside T, as in Definition (3), and it is actually orthogonal to U. When the ambient
domain T coincides with S we simply write U+ := Ué:.

3.3. Orthogonals for non-split domains. For the next property, which is the first real
requirement on (Z, &), we first recall a definition from [BHS17al:

Definition 3.5 (Friendly). Let V,W € &. Then W is friendly to V if W =V or WLV.
Notice that, as often happens in life, friendship is not always a symmetric relation.

Definition 3.6 (Split). A domain U € & is split if there exists a =-minimal domain W = U
such that, for every V E U, we have W £V or W_LV. We say that W is a Samaritan for
U, since it is friendly to every other V = U.

An example of a split domain in the usual HHS structure of the mapping class group is
as follows. Let U be a subsurface given by the disconnected union of an annulus W and
another subsurface. Then W is a Samaritan for U, since any subsurface V' £ U which does
not contain W must be nested in U — W. We postpone the details to Subsection 9.
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Remark 3.7. Notice that, if W is a Samaritan for U and W = U’ £ U, then by definition
U’ is also split with Samaritan W.

Remark 3.8. If U is E-minimal then it is trivially split, since it coincides with its unique
Samaritan.

Property 3.9. A hierarchically hyperbolic space has orthogonals for non-split domains if
for every two domains U & V either U is split or there exists W & V such that W _LU.

3.4. (Everywhere) dense product regions. Finally, for our construction to work we
must require that every coordinate space CU can be reconstructed from the projections
coming from the domains nested inside U.

Property 3.10 (DPR). A hierarchically hyperbolic space (Z, &) has dense product regions
if there exists a constant My such that, whenever U € & is not E-minimal, for any p € CU
there exists V & U such that dy(p, p;) < Mo.

Notice that, up to choosing a bigger constant My, we may always find a domain V' = U as in
the previous property which is also E-minimal, since if V' & V'’ © U then dU(pg, pgl) < 10F
by the consistency axiom (4).

Actually, we will use a seemingly stronger, yet equivalent version of the DPR property,
which we now state.

Property 3.11 (EDPR). A hierarchically hyperbolic space (Z,&) has everywhere dense
product regions if there exists a constant Cy such that the following holds. For every U € &
and every x € Fy there exists a maximal family Vi,..., Vi & U of E-minimal, pairwise

orthogonal domains such that x is Cy-close to the relative product region ngi}:l L

Clearly property (3.11) is stronger than property (3.10). The converse also holds if one
allows a single change in the HHS constant E from Definition 1.1, byt, remarkably, without
changing the rest of the HHS structure, including the domain set and all projections.

Lemma 3.12. Let (Z,8) be a HHS with the DPR property (3.10), for some constant M.
Up to a single change in the HHS constant E, (Z,S) also has the EDPR property (3.11)
for some constant Cy = Co(My, E).

Proof. We will prove the Lemma by induction on the level [ of U, that is, the maximum k
such that there exists a chain Uy = ... = U, = U. If | = 0 then U is C-minimal and the
EDPR property (3.11) clearly holds.

Now suppose the theorem holds for every domain of level strictly less than [, and let U be a
domain of level [. Before going on with the proof we recall some definitions from [BHS19].
We will say that the collection U of elements of &y is totally orthogonal if any pair of
distinct elements of 4 are orthogonal. Given a totally orthogonal family { we say that
W E U is U-generic if there exists V' € U so that W is not orthogonal to V.

Now fix z € Fy that we want to realise with minimal domains. A totally orthogonal
collection & is C'—good if any E—partial realisation point y for 4, as defined in the partial
realisation axiom (8), has the property that for each W = U we have dy (2, yw) < C.
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Notice that our goal is to find a maximal family ${ which is made of minimal supports
and C-good for some uniform constant C. Notice moreover that, if i is C-good but not
maximal, then we can add =-minimal domains to 4l and complete it to a maximal totally
orthogonal family. The latter will again be C-good, because a partial realisation point for
the larger family is also a partial realisation point for Ll

A totally orthogonal collection i is C'—generically good if any E—partial realisation point y
for 4l has the property that for each {-generic W we have dw (2, yw) < E.

We allow that il can be empty. In this case, we say that a C-partial realisation point for
& is simply a point y such that dy(zy,yy) < C. Notice that no W is J—generic.

Now the following lemma holds:

Lemma 3.13. For every C = 100E3 the following holds. Let $1 be totally orthogonal and
C—generically good but not C—good. Then there exists a totally orthogonal, 10C—generically
good collection S\ with U < U, obtained by adding =-minimal domains.

This fact is proven exactly as [BHS19, Lemma 3.3], whose proof runs verbatim in our
case. The only difference is that our inductive hypothesis, which replaces that of [BHS19,
Theorem 3.1|, allows us to assume that the additional domains are all =-minimal.

Now we can prove Lemma 3.12. Recall that we want to realise a point z € Fy. If { = &
is already My-good we can choose any maximal family of pairwise orthogonal, minimal
domains Vi,...,V,, £ U such that dU(xU,pgl) < My (whose existence is granted by the
DPR property (3.10)). Then any realisation point y for {(V;,zy;)} is also a realisation point
for {4 = ¥, since dy(xy, yy) < My by construction, and therefore x and y are My-close in
every coordinate space.

Otherwise, since no W is (J-generic, we can apply Lemma 3.13 and find a larger $; which
is 10My-generically good. If 4 is 10My-good we can complete it to a maximal family
of pairwise orthogonal, =-minimal domains which is again 10My-good, and we are done.
Otherwise, we can repeat the process with Lly. Since there is a bound on the cardinality of
totally orthogonal sets, in finitely many steps we necessarily get a good totally orthogonal
set made of minimal supports, and this concludes the proof. O

3.5. The main theorem.

Remark 3.14 (Normalisation preserves our hypotheses). Before stating the main theorem
we notice that, if (£, &) has one of the properties defined in the previous section, then so
does the normalised structure, as defined in Remark 3.14. This is because the new structure
has the same set of domains & with the same relations of nesting and orthogonality, thus all
combinatorial assumptions on the domain set (wedges, clean containers and property (3.9))
are preserved under the normalisation procedure. Moreover, the DPR property (3.10) still
holds as well, since the coarse closest point projection is coarsely Lipschitz. Hence, our
Assumption 1.5 that the HHS structure is normalised does not lose any generality.

Theorem 3.15. Let (£, &) be a normalised hierarchically hyperbolic space with weak wedges,
clean containers, the orthogonals for non-split domains property (3.9) and the DPR prop-
erty (3.10). There exists a combinatorial HHS (X, W) such that Z is quasi-isometric to
W.
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Moreover, let G be a finitely generated group which acts on (Z,&) by automorphisms. Then
G acts on (X, W), and the quasi-isometry f : W — Z is coarsely G-equivariant.

Qutline of the proof of Theorem 3.15. The graphs X and W will be constructed in Subsec-
tions 4.2 and 4.3, respectively. Then The four conditions of 2.7 are verified in Subsection
5, and more precisely:

Condition 1 is Corollary 5.10;

The two parts of Condition 2 are proved in Subsections 5.4 and 5.5;

Condition 3 is Lemma 5.7, which is implied by Lemma 5.8;

e Condition 4 is Lemma 5.11.

In Definition 4.11 we define a map f : W — Z, which we prove to be a quasi-isometry in
Lemma 5.19. Finally, the “moreover” part is proved in Lemma 6.2. (|

4. CONSTRUCTION OF THE COMBINATORIAL HHS
In this Section we construct the pair (X, W) and of the map f: W — Z.

Remark 4.1. The construction of (X, W) and f will only require (Z,8) to have clean
containers. The other hypotheses of Theorem 3.15 will be needed later, to ensure that
(X, W) is actually a combinatorial HHS and that f is a quasi-isometry.

4.1. Moral compass. Before going into the actual details, we explain the idea of the
construction, and why it should work (at least morally).

First, we consider the graph X whose vertices are all =-minimal domains of & (see Definition
4.2). Now, whenever U € & is not =-minimal, its coordinate space CU can be reconstructed
by just looking at the projections p}j coming from the E-minimal domains, by the dense
product regions property 3.10, and such projections are close whenever the E-minimal
domains are orthogonal, by Lemma 1.3. Hence, in a sense, the graph X will contain all
information about the HHS structure coming from the non-E-minimal domains.

However, X does not see the coordinate spaces of E-minimal domains. Therefore, for every
vertex V of X we consider its coordinate space CV, which we may assume to be a simplicial
graph up to quasi-isometry (see for example [CdIH16, Lemma 3.B.6]), and we replace V
with the cone over the O-skeleton CV(?). This way, the apex of the cone, call it vy, will
have CV(©) inside its link, and after adding the right W-edges we will be able to see CV
as the augmented link of some simplex. Call X the graph obtained after this “blow-up”
procedure (again, see Definition 4.2).

Hence, a vertex of W, which corresponds to a maximal simplex of X, is the data of a
collection Vi,..., Vi of pairwise orthogonal and =-minimal domains, and a point x; € CV;
for all ¢ = 1,...,k. Such a collection {(V;,z;)} admits a unique realisation point, in the
sense of Theorem 1.7, thus we can define a map f between vertices of YW and points in Z
(see Definition 4.11).

Regarding the edges of W, morally we would like to say that, if ¥ = {(V;,2;)}i=1, % and
A = {(Wj,xj)}j=1,.; are two maximal simplices, then they are W-adjacent if and only if
their realisation points are close, so that f is a quasi-isometry almost by definition. In turn,
such realisation points are close if and only if their coordinates are close in every coordinate
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space. For some technical reasons (mainly appearing in the proof of Lemma 5.11), the
exact definition of the edges of W will also take into account the supports {V;};—1 . x and
{W; }jzl’m,l of the two simplices: the more these supports intersect, the further we allow
the coordinates of the realisation points to be (see Definition 4.10).

4.2. The minimal orthogonality graph and its blow-up. The first step in the proof
of Theorem 3.15 is to construct the simplicial complex X, which will heavily depend on
both Z and the actual HHS structure. For the purpose of this subsection we do not need
to assume any property on (Z,5).

Let Gpin be the set of =-minimal elements of &. Let X be the graph with vertex-set
Smmin, with U,V € G, joined by an edge when ULV. Let X be the flag complex on X,
For each U € Gpin we can assume, up to quasi-isometry, that CU is a graph. Thus let L(U)
be the cone on (CU)®), and denote by vy the cone-vertex. Let X (1) be the graph formed
from | |p;es  L(U) by joining each vertex of L(U) to each vertex of L(V') whenever U LV

(i.e. whenever U,V are adjacent in X(l)). Let X be the flag complex on XM,

cuy® €N

Figure 1. U and V are orthogonal, =-minimal domains. Therefore, the cone over
(CU)© (here, in red) and the cone over (CV)(® (in blue) form a join. Notice that any
two points in (CU)(® are not adjacent.

Definition 4.2 (Blow-up). Define the retractionp : X — X by collapsing each subcomplex
L(U) to the vertex U. We will refer to X as the minimal orthogonality graph of the structure
(2,6), and to X as the blow-up of X.

For each simplex A of X, let A = p(A) be the image simplex in X. We will say that A is
supported in A.

Given a simplex A of X and a vertex U € A, let Ay = Anp~1(U). Note that Ay is either
a vertex of A or an edge of A. Moreover, we have

A = *UGZA)((]) AU.

A careful inspection of the construction yields the following (compare with [HMS22, Lemma
4.12|):

Lemma 4.3 (Decomposition of links). Let A be a simplex of X. Then
Lk(A) = p~! (Lkg (A)) * (%preao L1 (Ap)).
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Corollary 4.4. Let A be a simplex of X. Then one of the following holds:

(1) Lk(A) is either a single vertex or a non-trivial join.

(2) For each U € A we have that Ay is an edge.

(3) The simplex A is maximal inside X and the following holds. There exists U € A©
such that Ay = vy, and for every Ve A — {U} we have that Ay is an edge.

Proof. If at least two of the terms of the join from Lemma 4.3 are non-empty then Lk(A)
is a non-trivial join, and Item (1) holds. Thus suppose that exactly one of the terms of the
join is non-empty, so that Lk(A) coincides with that term.

If p~ 1 (Lkg(A)) # & then for every U € A we have Lk,-1 0y (Ay)) = . Hence Ay is
an edge, and Item (2) is satisfied (see the picture on the left in Figure 2).

Otherwise, suppose that p~'(Lkg(A)) = & (that is, that A is a maximal simplex) and
that Lk,-1()(Ay)) = & for all domains except one, call it Up. In particular, we have that

Lk(A) = Lk, 100 (Ary))-

If Ay, = vy, then we are in the case of Item (3) (see the central picture in Figure 2).
Otherwise Ay, is a point in (CU)(), and therefore Lk,-1(1)(Ar,)) = vy, is a single point,

thus again giving Item (1) (see the picture on the right in Figure 2). O
bu - Uy 4, du oy,
// . \\ ~ -
-1
l\p (Ik(A)) /‘ RN
xy S~o_ .- xy ' (CUYO Xy Xy,

Figure 2. All cases in which Lk(A) (represented by the dashed ellipses) is not a non-
trivial join.

Remark 4.5. By definition, the maximum cardinality of a simplex in X is twice the
maximum cardinality of a family of E-minimal, pairwise orthogonal domains, which is
bounded above by the complezity of the HHS structure by |[BHS19, Lemma 2.1|. Thus X
has finite dimension.

4.3. Edges between maximal simplices. Now we define the graph W for the combina-
torial HHS (X, W). The construction of this subsection will only require (Z,&) to have
clean containers.

Let 9(X) be the set of maximal simplices of X. The vertex set of the graph W is 9(X).
Now, given o € IMM(X), let Uy,...,U, € Gnin be the vertices of p(o) (a maximal collection
of pairwise orthogonal elements), so that o = %], {vy,, z;}, where x; € CU; and {vy,, x;}
is the edge of X joining vy, to z;. We will refer to the domains Uy, ...,U, € Gnin as the
support of o, and to the points x; € CU; as the coordinates prescribed by o.
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Definition 4.6. Let 0 = %I ,{vy,,z;} be a maximal simplex of X. Define the tuple
b(o) = (by)ves € [ [yes 2¢" as follows. Let V € &. Note that V is not properly nested
in any U;, since each U; € Sni,. Moreover, V cannot be orthogonal to all of the Uj;
otherwise, we could choose V' & V with V' € &5, and observe that V/LU; for all i,
contradicting maximality of o. So, for some ¢ < n, we have either U;hV or U; & V or
U; = V. In particular, if V' ¢ {Uy,...,U,}, then for some i we have a set pgi c CV of
diameter at most E. Moreover, by Lemma 1.3 and the fact that U; LU; for all i # j, we
have diam(\J;<,, 7, v pgl) < 10E.
Then:
o If V = U; for some i < n set by = x;. This is why we called z; the coordinate
prescribed by o.
e Otherwise, let byy € CV be by = UiSn,UiiV pgi, which is a non-empty set of diameter
at most 10FE.

Definition 4.7 (Co-level). Let U € &. We define the co-level of U, denoted by co-1v(U),
as the maximum k such that there exists a chain of the form U =Uy = ... = U, = S.

Notice that if U = V then co-lv(U) = co-lv(V). Moreover, the maximum co-level is n — 1,
where n is the complexity of the HHS structure.

Definition 4.8 (Orthogonal complement). Let A = {Uy,...,Us} be a non-empty simplex
inside X and let V be a domain such that U; = V for all i. If there exists T' & V that is
orthogonal to all U; then the orthogonal complement of A inside V, which we will denote
as A%,, is constructed inductively as follows:

e set {U1}{ as the orthogonal complement of U; inside V, as in Definition 3.4;
o If {UY,..., Uz}%/ has already been defined, then {Uq,..., UiH}‘L, is the orthogonal
complement of U 41 inside {U7, ..., U;}.

If V = S we denote the orthogonal complement of A in the maximal domain simply as AL

Notice that the definition is independent of the order of the vertices, because by construction
A‘L/ is also the unique E-maximal element 7" which is nested inside V' and is orthogonal to
all vertices of A.

Notation 4.9. With an innocent abuse of notation, we could say that:
e the orthogonal complement of the empty simplex is the =-maximal element S, and
co-lv(S) = 0;
e the orthogonal complement of a maximal simplex is empty, and co-lv(Z) = n.

Now we can finally define the edges of W.

Definition 4.10 (W-edges). Let ¥, A be two maximal simplices of X and let 3, A be their
supports. Let b(X) = (by)yes and b(A) = (cy)yes- Let n be the complexity of the HHS
structure. Let A > 0 be some constant.

Let W = (£ n A)* be the orthogonal complement of the intersection, and let k be the co-
level of W (with the Notation 4.9 for the exceptional cases). Then ¥ and A are W-adjacent
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if and only if, for every U € &,
dev (bu, cv) < (k + 1)A.

In other words, the more two adjacent simplices share their supports, the further away we
let them be in the fewer and fewer domains where by and ¢y may actually differ. Notice
that the definition depends on the constant A, which we will later choose to be large enough.

4.4. The realisation map. Finally, we define the map f : W — Z that will be the
required quasi-isometry.

Definition 4.11 (Realisation map). For every simplex o = %' ;{vy,, x;}, the partial real-
isation axiom (8) provides the existence of a realisation point z such that:

o dy,(zi, Ty, (2)) < E;
e for every V € & such that U; =& V or U;hV for some i < n we have that
dv(p‘U/,ﬂ'\/(z)) < FE.
In other words, the coordinates of z are E-close to the tuple b(c) from Definition 4.6, and
we say that z realises b(o). Moreover, by the uniqueness axiom (9) we have that z is
uniformly coarsely unique, and the bound only depends on E. Hence, setting f(o) = 2
gives a well-defined coarse map f: W — Z.

Remark 4.12 (Consistency of b(c)). The existence of a z that realises b(o) also shows that
the latter is a 20 E-consistent tuple. Indeed, every coordinate of b(c) has diameter at most
10F and is E-close to the corresponding coordinates of z, which satisfies the consistency
axiom (4).

5. PROOF OF THE MAIN THEOREM

Unless otherwise stated, in this Section we will work under the following assumption:

Assumption 5.1. (Z,S) is a normalised hierarchically hyperbolic space with weak wedges
(3.2), clean containers (3.4), the orthogonals for non-split domains property (3.9) and the
DPR property (we will work with its strong form, which is property (3.11)). For every
U € 6 let Fyy be the space of 20E-consistent partial tuples. Let X be the graph from
Subsection 4.2, and let W be the graph from Subsection 4.3, whose edges depend on the
constant A from Definition 4.10, that we will later choose (see Lemma 5.11, Claim 5.15 and
Lemma 5.19). Finally, let f: W — Z be the realisation map from Definition 4.11.

We choose Fyy to be the space of 20E-consistent tuples, in order to include the tuples of
the form b(c) from Definition 4.6.
Now our goal is to prove the following, which readily implies the first half of Theorem 3.15:

Theorem 5.2. Under Assumption 5.1 there exists X =0 such that, whenever A\ = X, the
pair (X, W) is a combinatorial HHS, and f is a quasi-isometry.
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5.1. Weak orthogonal complements. Before getting into the proof, we develop some
more technical notation and lemmas regarding the interaction between weak wedges and
clean containers.

Definition 5.3 (Weak orthogonal complement). Let A = {U1, ..., U;} be a simplex inside
X. Then its weak orthogonal complement is

Al = AL A AL

min

In other words, Aiﬁn is the unique domain 7" € & such that:

e T1U for every U € A; B B
e T contains every V € Gnin which is orthogonal to A (that is, every V € Lk (A));
e T is E-minimal among domains with the previous properties.

The weak orthogonal complement is uniquely determined by the link of A, in the following
sense:

Lemma 5.4. Let A,Y be two simplices inside X. Then the following are equivalent:
(1) Lk(A) € Lk(%);
(2) AL =L

min’

Proof. (1 = 2) Let T := Aiun Amin iiﬁn c YL . Since T C Amm, we have that T LU for
every U € A. Moreover, by definition of Weak Wedge T contains every V € Gpin which
is nested inside both AL and ¥, that is, every V € Lkg(A) n Lkg(2) = LkX(A)

min min’
Therefore, by minimality of AL. | we must have that T = AL hence AL = =L hin

min’ min’ min —

(2 = 1) Simply notice that, if V is S-minimal, then V € Lk(A) if and only if V & AL

by definition of AL. | and the same holds for X. O

min’

Corollary 5.5. Let A, Y be two simplices inside X. Then Lk(A) = Lk(X) if and only if
AL _ EL

min min°

Lemma 5.6. Let A be a simplex of X. Then exactly one of the following holds:
(1) Amm - AJ_;
(2) AL s split.

Moreover, in the second case Lk(A) is the cone with cone point V € Lk(A).

Proof. Clearly Aém = Al and if they do not coincide then the orthogonals for non-split
domains property 3.9 states that either Amm is split or there exists V = AL such that

V1AL, . But then there exists some =-minimal domain V’/ © V which lies in A+ but not

min*
in AL. | contradicting the definition of the latter.
For the “moreover” part just notice that, if V' is a Samaritan for Amm, then V is orthogonal
to any other vertex of Lk(A). O

5.2. Intersection of links and finite complexity. Now we turn to the proof of Theorem
5.2. First we check the parts of Definition 2.7 that depend on X only.



MANY HHS ARE COMBINATORIAL HHS 22

Lemma 5.7 (Verification of Definition 2.7.(3)). Let ¥, A be non-maximal simplices of X
and suppose that there exists a non-mazimal simplex T' such that [I'] C [X], [I'] £ [A] and

diam(C([T'])) = 3. Then there exists a non-mazimal simplex II which extends ¥ such that
[IT] € [A] and all T as above satisfy [I'] = [II].

Arguing as in the proof of [BHMS20, Theorem 6.4] (more precisely, at the beginning of
the paragraph named “(X, W) is a combinatorial HHS"), one sees that Lemma 5.7 is
implied by the following, which is [BHMS20, Condition 6.4.B| there:

Lemma 5.8. Under Assumption 5.1, let 3, A be non-maximal simplices of X. Then there
exist two (possibly empty or mazimal) simplices IL, W < X such that ¥ < II and

Lk(X) n Lk(A) = Lk(II) » ¥.
Proof of Lemma 5.8. We subdivide the proof into two major steps.

Finding the support of the extended simplex: Let £ and A be the supports of &, A,
respectively, and let ¥+, Al € & be their orthogonal complements. Let ® = A n Lk(X),
and let Y be the orthogonal complement of ® inside ¥+, that is, Yy = (£ » ®)*. Finally,
set © = U = @¥. We will progressively add vertices to these simplices, which will form the
supports of the simplices IT and ¥ we are looking for.

If ¥+ and At have no common nested domain we formally set Wy = ¢f. Otherwise, let
Wo = S+ Amin AL be the weak wedge of the orthogonal complements. Since by construction
Wy is nested in AL, every vertex of @ is orthogonal to Wy, Thus Wy = Y, since W is also
nested in 31 and Y} is a clean container.

Now we do the following procedure, which is divided into three parts.

Part 1: If Wy = & or Wy is non-split then we can set W' = Wy and Yy = Y} and skip
to Part 2. Otherwise, there exists a Samaritan U; & W such that U; LV for every other
C-minimal domain V' & Wy, and we add U to ¥. Then let Wy = {Ul}#vo (which might be
empty), and similarly let Y7 = {Ul})lfo. Clearly Wy E Y7, thus if W is again split we can
repeat this argument with Y; and Wj. This procedure, which adds one vertex at a time to
U, must end after at most n steps by the finite complexity axiom (5), since every new W;
is properly nested into W;_; for all i. Moreover, this procedure stops when W' = \TJ‘%VO is
either empty or non-split. Set Y = \I/%/O (which again might be empty).

Part 2: Now, if W/ = & we choose a simplex © = {Vi,...,Vi} of pairwise orthogonal,
C-minimal domains inside Y, and we skip to Part 3. Otherwise W’ = W) is a non-split
domain which is nested inside Yj = Yy, If W/ = Y we set © = . Otherwise, by the
orthogonals for non-split domains property (3.9) there exists a E-minimal domain V; = Y|
such that V1 LW’. Then let Y{ = {Vl}%,o,, which contains W’ and is properly nested into
Yy. Now we can iterate this construction with W’ and Y/, and the procedure has to stop
after at most n steps since Y] is properly nested inside Y, ; for all <. Thus, in the end we
find a simplex © = {V4,...,V,} of C-minimal and pairwise orthogonal domains, which are
nested in Y and whose orthogonal complement inside Yj is W',
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Part 3: Summing up, we have defined some (possibly formally empty) domains and two
simplices ¥, © < X such that

Yo = (E+®)*;
Yy = Uy ;

Wo =54 Amin A

W= U, - 0L,
Hence we have that

(i*@*@*@)l =W' = Wy =35t Amin AT
Since Lk(X) n Lk(A) is the subgraph of X spanned by all C-minimal domain that are
nested inside Wy, the previous nesting can be restated as
Lk(X) nLk(A) 2 Lk(Z « & » U % O),
and since the domains of W lie in W, by the construction from Part 1 we also have that
Lk(Z) nLk(A) 2 Lk(Z*® +« U x O) * .

Moreover, the converse inclusion is also true, since by the construction of Part 1 we have
that, if a minimal domain V' is nested in Wy, then either V' is one of the vertices of ¥ or
| = \I/I%VO = W’. Then we have proved that

(1) Lk(X) nLk(A) = Lk(Z« @+« U« O) » U,
where
¢ =Lk(X) n A;
U < Lk(A) n Lk(Z);
O < Lk(X) — Star(A)
Finding the extension of ¥: Let A = ® x U x O, and let II be the simplex defined as
follows:
e p(Il) = L x A;

e If U € X does not belong to Star(A) then Il is an edge containing X, so that
Lk, (Hy) = &;

e IfUe X nLk(A) then Iy = Sy;

o If U e ¥ n A then IIy = ¥y whenever Xy and Ay are single vertices “of the same
kind” (that is, either they are both the vertex of the cone or they are both points
in the base); otherwise Il is an edge containing 3,,. In other words, we choose Il
so that

Lk,-1(0) (Hy) = Lky-1(7) (Ev) 0 Lky-1 07y (Av);
° IfUG(i)thenHUIAU;

e IfU e \I/ then Il is the cone point vy.
o If U € © then Iy is an edge, so that Lk,-1¢) (Ily) = &;
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Iy by Lk(X)
A extend Xy if needed Ay for every U € ®
Lk(A) Su vy for every U e ¥
X — Star(A) | complete ¥y to an edge | choose an edge for every U € ©

Figure 3. Schematic representation of the simplex II. Each cell describes how Il is
defined whenever the domain U belongs to the area given by the intersection between
the row label and the column label (for example, if U € ¥ n Lk(A) we have that
Iy = Xy).

Moreover, we define the simplex W such that p(¥) = ¥ and that, for every U € ¥, Uy; = vy
(this is exactly how we defined Iy for U € ¥).

We are finally ready to prove that Lk(A) n Lk(X) = Lk(II) » U. First we notice that
U < Lk(A) n Lk(X) since its support is ¥, whose vertices lie in Wy. Next we argue that
Lk(IT) < Lk(A). Let u € Lk(IT) and let U = p(u). If U € X x A then a careful inspection of
how we defined II shows that u € Lk(A). Otherwise U € Lk(X « A) = Lk(A), and therefore
u € Lk(A). Thus we showed that Lk(A) n Lk(X) 2 Lk(II) » U.

For the converse inclusion, let u € Lk(A) n Lk(X), so that U = p(u) belongs to Star(3) n

Star(A) and u € (Lkp—l(U)EU) ) (Lkpq(U)AU). There are four possible cases:

o If U e £ n A then (Lk,-1/)Xv) n (Lky~1()Av) = Lk,-10(Ily), as we already
noticed. -

o IfU e ¥nLk(A) then Ay = ¢F, and again by construction we have (Lk,-1 ) %y) N
(Lky—11nAv) = Lky-107)Zu = Lky-1(07) ().

o Symmetrically, if U € Lk(¥) n A = ® then Xy = &, and we have (Lk,-1)Xy) N
(Lkp—l(U)AU) = Lkp—1(U)7AU = Llip—l(U) (HU).

e Finally, suppose U € Lk(X) n Lk(A), that is, U is nested in Wp. Then by construc-
tion either U is nested in W’ or U € W. In the former case U € Lk(X x A), hence
u € Lk(IT). In the latter case, either u = vy is the cone point, which belongs to W,
or u € Lk,-1(¢y(vy), and since Iy = vy we have that u € Lk(II).

This concludes the proof. O
We point out the following by-product of the proof:

Corollary 5.9. Under Assumption 5.1, let ¥, A be two simplices of X. Then there exist
two simplices A,V < Lk(X) such that

Lk(X) n Lk(A) = Lk(X « A) * .
Furthermore, we can assume that Lk(X « A) is not the cone with cone point V € Lk(X x A).

Proof. The first part of the statement is just Equation (1). For the “furthermore” part, if
Lk(X % A) is the cone with cone point V' € Lk(X  A), then we have that

Lk(E*A)« U =Lk(X*xAxV)* U V.
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In this case we can set A’ = A»V and ¥’ = ¥ x V, and then we check again if Lk(X x A’)
is a cone with cone point V’. This process must end after finitely many steps, since X has
finite dimension by Remark 4.5. g

As a consequence of the previous Lemma we can also verify another axiom:

Corollary 5.10 (Verification of Definition 2.7.(1)). Under Assumption 5.1, X has finite
complezity in the sense of Definition 2.8.

Proof. One can argue exactly as in the proof of [BHMS20, Claim 6.8], which only uses that
X has finite dimension, as pointed out in Remark 4.5, and [BHMS20, Condition 6.4.B|,
which is our Lemma 5.8. U

5.3. Edges of links.

Lemma 5.11 (Verification of Definition 2.7.(4)). Under Assumption 5.1, there ezists a
constant \g = \o(E) such that W has the following property whenever X = Xg. Let A be
a non-maximal simplex of X. Suppose that v,w € Lk(A) are distinct vertices contained

m W—adjacent mazximal simplices o, 0. Then there exist W—-adjacent maximal simplices
II,,I1, of X such that A xv < 1L, and A * w < I1,,.

Proof. Recall that p: X — X is the retraction from Definition 4.2 that maps every vertex
of the blow-up to its support. Moreover, for every maximal simplex o = x¥_ {vy,, z;} of
X, where U; € & and x; € CU;, let (b(0)w )wes be the tuple from Definition 4.6, which was
defined as follows:

o)y = {x it W= U;;
U, 2w p‘[,][}' otherwise.
Set V = p(v), W = p(w) and A = p(A). Let 0,,0, be the two W-adjacent simplices
containing v and w, respectively, and let ¥ = &, N &, (which is possibly empty). Let
k = co-lv(Xi, ). Recall that, by Definition 4.10 of the edges of W, we have that, for every
UegeG,
dev (b(oy)u, blow)r) < (k4 1)A.

If V = W then we can complete A to two simplices I1,, IT,, with the same support (so that,
in the sense of Notation 4.9, the co-level is n) and such that v € II,,w € II,, and these
simplices coincide away from V. Since

dV(b(Hv)Va b(Hw)V) = dV(b(Uv)V7 b(aw)V) < (k + 1)/\ < (n + 1))\>

while by construction dy (b(IL,)r, b(Il,)r) = 0 whenever U # V', we are done.
If V1W then we can complete A to a simplex II,, = I, containing both v and w, and we
have nothing to prove.

Thus assume that V' # W and VAW. In particular none of them lies inside either A or X.
Therefore V, W € Lk(X) nLk(A). By Corollary 5.9 we can find two simplices ®, ' < Lk(X)
such that

Lk(X) n Lk(A) = Lk(A x @) » &'
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Moreover, we can assume that Lk(A*®) is not a cone with any of its vertices as cone point,
which implies that (A * ®)L. = (A @) by Lemma 5.6.

Now, notice that V' cannot lie in ®’, since otherwise it would be orthogonal to every other
vertex of Lk(X) n Lk(A), including W. Hence V must lie in Lk(A = ®), and the same holds
for W. Now set ¥, = &, n Lk(A % ®), which contains V as we just argued, and similarly

WU, = G, N Lk(A x ®). The situation in X is therefore as in Figure 4.

Figure 4. The simplices involved in the construction of Lemma 5.11, where edges
denote joins in X. Actually, ¥ and A x ® need not be disjoint, but none of them can
contain V or W.

Now, Lk(A = ®) < Lk(X) by construction, or equivalently (A « ®)L. = $1. by Lemma
5.4. Hence

(2) (AxP)t = (Ax D)y € Sy © 5
There are two possible cases, depending on whether the two orthogonal complements coin-
cide or not.

Case 1. Suppose first that (Ax®)- = S+, This means that G, = L« V,,, because a support
of &, which is orthogonal to ¥ must also be orthogonal to A « ®. Therefore A  ® x ¥,
is already a maximal simplex, and the same is true for A x ® x U,,. Now complete A to
maximal simplices II,,, IT,, as follows:
e II, is supported on A » ® x W,,, and similarly IL,, is supported on A x ® x W,,;
e if Ue A and Ay n (CU)® = (¥ (that is, if A does not prescribe the coordinate for
U) then choose the same coordinate both for II,, and IL,;
e if U e A and Ay n (CU)© = {py} (that is, if A already prescribes the coordinate
for U) then set II, = I, = {vv, pv};
e if U € @, choose the same coordinate both for II, and II,,;
e if U € U, choose for II, the coordinate prescribed by o, and similarly if U € ¥,,,
choose for II,, the coordinate prescribed by oy,.

Now, since ¥+ = (A = ®)1 they have the same co-level k. Thus, in order to show
that II, and II,, are W-adjacent, it is enough to prove that, for any U € &, we have
dey (b(IL,) 7, b(I1y, ) ) < (k 4+ 1)\, because p(Il,) and p(I1,) coincide at least on A x ®.

If U4(A % ®) then clearly dey (b(IL,) 7, b(IL,)y) = 0. Otherwise U is also orthogonal to %,

and by maximality of o, it cannot be orthogonal to every vertex of 6, —% = W,. This means
that b(Il,)y = b(oy)u, since they both depend only on the coordinates over ¥,,, which are
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the same for both II, and o, by construction. For the same reason b(Il,)y = b(0y)y. This
in turn means that

dCU(b(Hv)Uab(Hw)U) = dCU(b(O'U)U,b(O'w)U) < (k‘ + 1))\.

Case 2. Now we are left to deal with the case when (A « @)+ = £+, We will find two
maximal simplices II,,, IT,, whose supports extend A * ® » ¥,, and A » & x W,,,, respectively,
and then it will suffice to prove that, for every domain U € &, we have

dev (b(ILy) o, b(Iw)r) < (K + 2)A.

In other words, it will be enough to loosen the threshold just by adding a single A. Since
co-lv((A » ® x ¥,)4) < co-lv(E4) = k we will then have that IT, and IT,, are W-adjacent.
Let ©, = ,— (X*V,) be the simplex spanned by all remaining vertices of &,. Moreover, let
R, = (Ax®* W)t if it exists (if not, the following construction is unnecessary because our
simplex is already maximal). Notice that R, is also orthogonal to X, hence every domain
U = R, is orthogonal to every domain in ¥ x ¥, and therefore it cannot be orthogonal to
every vertex of O, by maximality of G, = X x ¥, x ©,.
Then let ¥ = (r{;)ucr, € Fr, be the tuple defined as follows:

e if U € ©, then r{; is the coordinate prescribed by oy;

e otherwise r{; = pg/ where the union varies among all U’ € ©,, whose projection

to U is defined.

By the previous argument, r{; is well-defined for any U & R,,. Moreover, arguing exactly as
in Remark 4.12, one sees that r? is indeed a 20 E-consistent tuple, and therefore an element
of F’ Ry -
Now, if R, is =-minimal then 7 is just a point in CR,, and we set ), = R,, and 2, as the
edge {vg,,r"}. Otherwise, by the EDPR property (3.11) there exist a maximal family of
pairwise orthogonal, =-minimal domains €, = {O1,...,O;} whose realisation point is Cp-
close to the realisation of r in Fr,. This means that, if we define the simplex €2,,, supported
in Q,, by choosing for every I € {0, the coordinate Y, then for every U = R, and every
maximal simplex € containing €, the U-coordinate of the realisation tuple b(€2) is M-
close to rf;, where M = M(Cp, E) is a constant coming from the distance formula, Theorem
1.10.
Define O, Ry, (), analogously, so that the situation looks like in Figure 5.
Then complete A to maximal simplices II,,, 1L, as follows:
e II, is supported on Ax®» WU, xQ,, and similarly IL,, is supported on Ax®x W, *Qy,:;
e if U € A x ®, choose the same coordinates both for I, and II,;
e if U € U, choose for II, the coordinate coming from o,, and similarly if U € ¥,
choose for II,, the coordinate coming from o,
e if U € ), choose the coordinate coming from €,,, and similarly if U € Q, choose the
coordinate coming from €2,,.

Now we show that for every U € & we have dey (b(ILy)y, b(Ilw)r) < (K + 2)A. B
If U£(A * ®) then clearly dey (b(I1y)y, b(ILy)) = 0. Otherwise U is also orthogonal to ¥,
since (A » @)L = Bt
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Figure 5. The simplices of X involved in the second case of the proof of Lemma
5.11, where edges represent joins. By construction ¢, = ¥ * ¥, x ©,, and similarly for
0w =2 *x W, *O,.

Claim 5.12. If UJ_(A * (i)) then dey (b(ILy)y, b(oy)y) < M.
Proof of Claim 5.12. First suppose that U4 W¥,. Then b(Il,)y and b(o,)y both contain the

set
U7 Ures 7 otherwi
Tel,, T+U PU otherwise.
We are left with the case when ULA « ® « ®,. In this case b(I1,)r contains the set
v UTGQU,TiU pg otherwise.
But by our definition of €2, 3, is M-close to the coordinate
Tv _ (\Ijv)U lf U € (:)'l))
g UTeév,TIU ,05 otherwise,

which is a subset of b(o, )y . O

The proof of the Claim also applies to II,, and o,,. Hence
dev (b(Iy) v, b(Iw)v) < dew(b(ow)u, blow)v) + 2M < (k + 1)A + 2M.
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Therefore it is enough to choose A\g = 2M, so that (k + 1)\ + 2M < (k + 2)\ whenever
A= Ao O

5.4. Hyperbolic links. Recall that, for any domain U, we defined Fy as the space of
20 E-consistent tuples for U, which is a sub-HHS of (£,&) with maximal domain U. For
convenience, up to quasi-isometry we can assume that Fy is a graph (again, by [CdIH16,
Lemma 3.B.6]). Moreover, for every V' & U one has the relative product region P‘g c Fy,
which we will often refer to as Py when the ambient domain will be clear.

Definition 5.13. The factored space Fyy associated to U is the graph obtained from Fy
by coning off the product region Py for every V & U.

We will denote by Hy the vertex of the cone over Py. By [BHS17a, Corollary 2.9 and
Remark 2.10], if Z is a normalised HHS then Fyis uniformly quasi-isometric to CU, and
therefore uniformly hyperbolic. More precisely, the quasi-isometry is induced by the pro-
jection 7y @ Fy — CU. Then the strategy to prove that links of simplices inside X are
hyperbolic will be to show that each of them is either bounded, quasi-isometric to a coor-
dinate space or to a factored space.

Lemma 5.14. Under Assumption 5.1, there exists \1 = Ao such that the following holds
whenever A = A1. There exists §, depending both on A and on the HHS structure, such
that, for every mon-mazimal simplex A < X, the associated coordinate space C([A]) is
&-hyperbolic.

Proof. We consider all possible shapes of Lk(A), according to Corollary 4.4.

If Lk(A) is a point or a non-trivial join: In this case C([A]), which is obtained by
adding edges to Lk(A), has diameter at most 2, and therefore it is 2-hyperbolic.

If A is almost-maximal and Ay = vy for some U € A: In this case Lk(A) is the base
of the cone over CU. Now, by construction two points p, q € Lk(A) belong to W-adjacent
maximal simplices if and only if

dev(p,q) < (n+1)A

This shows that C([A]) and CU are quasi-isometric with uniform constants, and since CU
is E-hyperbolic then C([A]) is d-hyperbolic for some constant 6 = §(\, E, n).

If Ay is an edge for every W € A: In this case C([A]) is (2,2)-quasi-isometric to the
subgraph of X ™" spanned by Lk(A), via the retraction p: X — X. Let Lk(A)™" be this
subgraph, and let U = AL,

Now, if U is S-minimal then Lk(A)*" consists only of U, hence is uniformly bounded.
Then suppose that U is non-E-minimal. At the level of vertices we can define a map
Y : Lk(A)tYW — Fy by sending every =-minimal domain V = U to the cone point Hy
over the corresponding product region Py,. Our goal is to prove that v is a quasi-isometry
with uniform constants, and therefore Lk(A)*" is uniformly hyperbolic.

First we show that 1) is coarsely surjective. For every = € Fy;, by the EDPR property (3.11)

we can find a maximal family Vi,...,V; & U of E-minimal domains whose product region
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is Cp-close to x. Then in particular the product region Py, is Cy-close to = in Fyy, which
means that the corresponding cone point Hy, = (V1) is (Co + 1)-close to « in Fyr.

Next, we prove that the map 1 is uniformly Lipschitz, by showing that adjacent vertices in
Lk(A)*" map to uniformly close points inside Fyy. If V, V' & U are C-minimal domains
which are joined by an edge of W then one of the following must hold:

e V1V’ in this case the product regions Py and Py are already uniformly close
inside Fy;. Indeed, if one chooses two coordinates p € CV and p’ € CV’ then, by the
partial realisation axiom (8) for the sub-HHS Fy;, one can find an element = € Fy
whose coordinates must satisfy the following properties:

dv(zv,p) < E;

dys(zvr,p') < E;

du(zu, ply) < E whenever ULV
dy (v, pl; ) < E whenever U4V

Therefore, by definition, « belongs to both Py and Fy,. This means that the cone
points Hy and Hy are at distance at most 2.

e There exist two maximal simplices II, II’ which extend A and such that V e II and
V' e Il', and for every W € & we have

dew (b(I)w, b(IT ) < (1 + co-lv(U)A < (1 + n)A.

In this case let = (b(I)w)wey and 2’ = (b(IT')w )wevu be the corresponding
tuples inside Fy7. By the Distance Formula (Theorem 1.10) for the sub-HHS Fyy,
the distance of these points is bounded by some constant D depending only on
\,n, E. Moreover x € Py, and 2’ € Py by construction, and therefore x is adjacent
to Hy inside Fyy and similarly for 2’ and Hy». Therefore dp, (Hy,Hy') <2+ D.

In order to complete the proof that v is a quasi-isometry we need the following, which is
the only spot where we have to choose A; carefully:

Claim 5.15. Under Assumption 5.1, and with the notation of Lemma 5.14, there ezists
A1 = Ao such that the following holds whenever X = A\1. Let VW & U be two E-minimal
domains. If the product regions Py and Py lie within distance at most 2Cy + 1 in Fy,
where Cy is the constant from the EDPR property (3.11), then V and W are W-adjacent
in Lk(A)*W.

Proof of Claim 5.15. Let y € Py,z € Py be two points that are (2Cy + 1)-close in Fy;.

Moreover, let © = {Ti,...,T;} be a family of pairwise orthogonal, E-minimal domains
such that T;1U for all ¢ = 1,...,l. Our goal is to complete ©® to a maximal family
V = W, Vi,..., Vi of pairwise orthogonal, =-minimal elements whose product region is

uniformly close to y, and similarly for W and z.

If V. = Vy has no orthogonal inside U then we have nothing to do. Otherwise, define
a=(yr)cyL € de_ as the coordinates of y in the domains of the orthogonal complement.
If V(} is not itself minimal, by the EDPR property (3.11) there exist a maximal family
Vi,...,.Vi, & V[} of E-minimal and pairwise orthogonal domains whose product region
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inside FV[j_ is Cy-close to a. Either way, there exist p; € CV;, for i =0, ..., k, such that the
realisation point b(X) of the simplex ¥ = %%_ {vy,, p;} = X is Cp-close to y. Arguing the
same way for W we can find a simplex ¥’, whose support contains W and whose realisation
point is Cop-close to w. Therefore the realisation points of these two simplices are (4Cy+ 1)-
close, and since projections to coordinate spaces are uniformly coarsely Lipschitz there
exists M = M(Cp) such that, for every domain I € &, der(b(X),b(X)) < M. Therefore, if
we set Ay = M we have that, whenever A > Ay, for every I € &

der(b(%),b(X)) < .

Hence X and Y are W-adjacent by definition, and therefore V and W are W-adjacent in
Lk(A)*W, O

Now, we claim that d,ay+w(V, V') < 4dp, (Hv, Hy)+2 for every two C-minimal domains
V, V' £ U, and this will complete the proof that v is a quasi-isometric embedding. Consider
a geodesic v < FU from Hy to Hy». The vertices of « can either be tuples of Fy; or cone
points associated to product regions. Let x1,...,x; be the vertices of v belonging to Fy,
and for every x; consider a E-minimal domain I; whose product region is Cy-close to x; in
Fy, which exists by the EDPR property (3.11). Then the situation in Fy is as shown in
Figure 6.

Hy Hy Hy»

N N

z1

Hy, oy, Hy,

Figure 6. The continuous segments represent the path v < Fy. For each vertex z;
of v which lies inside Fy; we choose a =-minimal domain I; € & whose product region
is Cy-close to z; in Fy.

Now, Claim 5.15 implies that V' is W-adjacent to I; (since x; € Py by construction), and
similarly that V'’ is W-adjacent to Ij. Then the proof is complete if we show that, for every
i=1,....,k =1, dyayw (i, Li+1) < 4, because then dpya)+w(V, V') < 4L(7) + 2 where
L(7) is the length of .

Thus let x;,x;11 be two consecutive vertices of v n Fy. If they are joined by an edge
of Fyy (in Figure 6 this happens to 1 and x2) we have that Pj, and P, , are at most
(2Cy + 1)-close, thus I; and I;4; are W-adjacent by Claim 5.15.

Otherwise v might contain a segment of the form {x;, Hy, z;11}, where W £ U is a domain
such that x;, z;4+1 € Py (in Figure 6 this happens to z2 and x3).

If W is &-minimal then by Claim 5.15 we see that I; and W are W-adjacent, and similarly
for I;+1 and W. Therefore dyay+w(1i; li+1) < 2.
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Otherwise suppose that W is not =-minimal, and let y; = ((x;)7)rcw € Fw, which is again
20 F-consistent since it is a sub-tuple of a consistent tuple. By the EDPR property (3.11)
there exists a minimal domain R; & W such that y; is Cy-close to the relative product
region P}%/ inside Fy. This also means that the whole tuple x; is Cy-close to the relative
product region Pg, = Pll%]i inside Fy, since any tuple in ng can be completed to a tuple
in P]% by choosing some coordinates for the domains 7' = W,} Therefore I; and R; are
W-adjacent, by Claim 5.15, since their product regions in Fy; are (2Cy + 1)—close.

Now, if W is split then pick a Samaritan Q = W. Hence either R; = @, or R; 1@ and
therefore they are W-adjacent. Then de(A)+W (I;, Q) < 2, and by repeating this procedure
with /;+1 and the same Samaritan @ we also get that dpya)+w(li+1,Q) < 2. Therefore
dpyayw (L, Liv1) < 4.

If otherwise W is non-split, by property (3.9) there exists a minimal domain ' = U which
is orthogonal to W. Then Q" and R; are W-adjacent since they are orthogonal, and arguing
as before we get that

dpsaysw (I Tiv1) < dpgayew (I, Q) + dpyaysw (@', Liv1) < 4.
This concludes the proof. O

5.5. QI-embedding of coordinate spaces.

Lemma 5.16. Under Assumption 5.1, whenever X = A\ there exists a constant §', depend-
ing both on A and on the HHS structure, such that, for every non-maximal simplex A ¢ X,
the associated coordinate space C([A]) is (8, 0")-quasi-isometrically embedded inside Y.

Proof. Again, we look at all possible shapes of Lk(A). If it is a single point or a non-
trivial join then of course it is (2,2)-quasi-isometrically embedded inside Ya. In all other
cases, since C([A]) is a subgraph of Ya, it will be enough to construct a coarsely Lipschitz
retraction from YA to Lk(A).

If A is almost maximal: Let U be the C-minimal domain such that Ay = vy. Then
Lk(A)© is the copy of (CU)© inside X, and since in Lemma 5.14 we showed that C([A]) is
uniformly quasi-isometric to C(U), we will often replace distances in C([A]) with distances
in C(U) without explicit mention.

Claim 5.17. Ya is the subgraph spanned by Lk(A)©) = (CU)© and the cones over CV for
all E-mainimal domains VAU . In other words

Ya = spany+w { CUO U {v}
p(v)AU

Proof of Claim 5.17. Since, by definition YA = spany+w {X — Sat(A)}(o), we will equiva-
lently prove that

Sat(A) = {wy}u | {v}

p(v) LU
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Indeed, clearly vy € Sat(A)@ while CU®) nSat(A) = &. Moreover, whenever V = p(v) is
orthogonal to U, it is possible to complete {U, V'} to a maximal family of pairwise orthogonal
domains ¥ = {U,V, Vi, ..., Vi}, and we can find an almost-maximal simplex ¥ supported in
3 which contains v and such that Lk(X) = Lk(A) = CU®. Hence v € Sat(A). Conversely,
if v € Sat(A) then Lk(v) 2 Lk(A) by definition, therefore V' = p(v) either coincides with,
or is orthogonal to U. O

Now, at the level of vertices, we can define a retraction r : YA — C([A]) as follows:

vif v (0).
r@):{ foe (C(a])©;

pil’](v) otherwise.

Notice that the retraction is well-defined, as a consequence of Claim 5.17. We are left to
prove that this retraction is coarsely Lipschitz. Let v,v’ be two adjacent vertices in YA,
and we will show that dga)(r(v),r(v")) is uniformly bounded from above.

e If both v, v’ belong to (CU)(® then they are adjacent in C([A]), by how the latter
is defined.

o If v e (CU)O but o' ¢ (CU)O then, setting V' = p(v') we must have that UMV,
Moreover, by definition of W-edges, there must be two simplices o,c’ such that
v € o, vV € ¢’ and the corresponding realisation tuples b(c),b(c’) are at least
(n + 1)A-close in every coordinate space. Now b(c)y = v by construction, while
b(o')y is a set of diameter 10F which contains that pgl. Hence

dy(r(v),r(v")) = du(v, pl ) = dy(b(o)y, b(a")y) + 10E < (n + 1)\ + 10E.

e We are left with the case where both v,v’ do not belong to (CU)(O), and we want
to find an upper bound for dg(r(v),r(v")) = dy(py, p; ), where V = p(v) and
V' = p('). If V = V'’ then we have nothing to prove. Otherwise V' and V' may
be adjacent in X+ for two different reasons. If V' L V’, then by Lemma 1.3 we
see that dy(p}, p‘[j/) < 2E. Otherwise there are two simplices o, ¢’ such that v € o,
v" € ¢’ and the corresponding realisation tuples b(c), b(c”) are at least (n+ 1) A-close
in every coordinate space. Then, similarly to the previous case, we have that

du (o8, pty) < du(b(0),b(c")) + 20E < (n + 1)A + 20E.

If Ay is an edge for every V € A: Let A = {V4,...,V;} and let U be the orthogonal
complement of A. If U is split then Lk(A) is a join, and therefore it is quasi-isometrically
embedded into YA since it is uniformly bounded.

Thus we can assume that U is non-split. The next step is the following:

Claim 5.18. If a vertex v € X belongs to YA then V = p(v) is not orthogonal to U, and
therefore p%(v) 1s well-defined.

Proof of Claim 5.18. We prove the contrapositive of the statement, that is, we show that
if V' = p(v) is orthogonal to U then v € Sat(A). We have that U = V1, and either they
coincide or there exists a =-minimal domain V; inside V' such that V; LU, by property
(3.9) (which applies since we are in the case when U is non-split). Then after finitely many
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steps we can find a simplex ¥ = {V = Vf,...,Vi} containing V' and whose orthogonal
complement is U. Then U = £+ = Al and therefore Lky+w(X) = Lky+w(A) because
they are both spanned by the C-minimal domains inside U. Hence, since p(v) = V € ¥ we
have that v € Sat(A). O

Now, the proof of Lemma 5.14 gives a uniform quasi-isometry C([A]) — Fyy, mapping the
cone over a =-minimal domain V' = U to the cone point Hy. In turn, Fy is uniformly
quasi-isometric to CU via the projection map. Hence the composition of these maps is a
quasi-isometry 9 : C([A]) — CU, which maps the cone over a C-minimal domain V & U
to p‘U/.

Now define 7 : YA — C([A]) by mapping every vertex v € Ya to pz(;](v) € CU (which is well-
defined by Claim 5.18) and then applying the inverse quasi-isometry ¢~ : CU — C([A]).
Notice that if p(v) = U then r(v) = p(v), and therefore 7 is a coarse retraction onto C([A]).
We are left to prove that, whenever v, v’ € YA are adjacent vertices, then dy (plz,(v), p%(v/)) is
uniformly bounded from above, and therefore r is coarsely Lipschitz as it is the composition
of a Lipschitz map and the uniform quasi-isometry 1)~!. There are three possibilities:

o If p( p(v') then we have nothing to prove.

v) =
e If p(v)Lp(v') then by Lemma 1.3 we have dU(le}(v),p%(U )) < 2F;
e If v, 0’ lie in W-adjacent simplices o, 0’, respectively, then we have that

du (PP, Py < Ay (b(0),b(0")) + 20E < (n+ 1)T + 20E
This concludes the proof. O

5.6. The realisation map is a quasi-isometry. We are left to prove the following
Lemma, which concludes the proof of Theorem 5.2:

Lemma 5.19. Under Assumption 5.1 there exists Ao = A1 such that, whenever A = Ao, the
map f: W — Z from Definition 4.11 is a quasi-isometry.

Proof. First we show that f is Lipschitz. Given two W-adjacent simplices %, A, we have
that, for every U € &, dey (b(2)r,b(A)y) < (n+ 1)\, because n is the maximum co-level,
so gives the highest threshold in the Definition 4.10 of W-edges. Moreover, since f(X)
realises b(X) and f(A) realises b(A), for every U € & we have that

dev(f(X%), f(A)) < 2E +deu(b(X)v,b(A)y) < 2E + (n+ 1)A.

Thus, by the distance formula (Theorem 1.10), there exists M = M(E,\,n) such that
dz(f(2), f(A)) < M. This proves that f is M-Lipschitz.

Furthermore, f is coarsely surjective. Indeed, the whole HHS Z coincides with Fg, where
S € © is the =-maximal element. Hence, by the EDPR property 3.11 there exists a
constant Cp such that every z € Z is Cp-close to the product region Py, associated
to a maximal family Vi, ..., Vi of E-minimal, pairwise orthogonal domains. In particular,
z is Cp-close to some realisation point 2’ for some simplex A, and such a point uniformly
coarsely coincides with f(A) by the uniqueness axiom (9).
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We are left to prove that, for every two maximal simplices 3, A of X, their distance in W
is bounded above in terms of dz(f(X), f(A)). Now, Z is a K-quasigeodesic metric space
for some K > 0, therefore it is possible to find a (K, K)-quasigeodesic path

v ={z0 = f(2),21,..., 21,7 = f(A)}

from f(X) to f(A). In particular, the number [ of vertices of this path is bounded above
by Kdz(f(X), f(A)) + K, and for every i = 0,...,l — 1 we have that dz(z;,x;4+1) < 2K
Moreover, by coarse surjectivity of f, for every i = 1,...,l—1 we can find a simplex ¥; such
that f(%;) is Cp-close to ;. Hence, setting 3¢ = ¥ and ¥; = A, for every ¢ =0,...,1—1
we have that dz(f(%;), f(Xi+1)) < D, where D = 2C) + 2K.

Claim 5.20. If Xy is large enough, each two consecutive simplices ¥; and ;11 must be
W-adjacent.

If this is true we are done, since then

-1

dw(2,A) < Y dw(Si, Bi) = 1 < Kdz(£(2), f(A)) + K.

i=0
To prove the claim notice that, by the distance formula Theorem 1.10, there exists a constant
My = My(D) such that, for every U € &, we have that dey (f(2:), f(Xit1)) < Mp. Then in
turn dey (b(2;), b(2i4+1)) < My + 2E, and if we choose Ao > My + 2E we have that ¥; and
Yi+1 are W-adjacent whenever A > Ay (regardless of how their supports intersect, because
A is the tightest threshold for the definition of a W—edge). O

6. ADDING A GROUP ACTION

Here we make some remarks on the construction of the combinatorial HHS for the case
when Z is acted on by some finitely generated group G, in the sense of Subsection 1.3.
First, we want to show that the construction from Section 4 is G-equivariant, that is, the
action of G on Z induces a “compatible” action on (X, W). This will prove the “moreover”
statement of Theorem 3.15. Then, in Theorem 6.6 we will prove that, if G has a HHG
structure coming from the action on Z then it will also have a HHG structure coming from
the action on (X, W).

The following is the combinatorial counterpart of Definition 1.12:

Definition 6.1. We say that a group G acts on the pair (X, W), where W is an X-graph, if
G acts on X by simplicial automorphisms, and the G—action on the set of maximal simplices
of X extends to an action on W.

Here we show that if we start with a G-action on (Z,&) then the pair (X, W) inherits a
G-action:

Theorem 6.2. Let (£,8) be a HHS with clean containers. Let G be a finitely generated
group acting on an HHS (Z,6) by automorphisms. Let (X, W) be the graphs constructed in
Subsections 4.2 and 4.3. Then G acts on (X, W). Moreover, the realisation map f : W — Z
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from Definition 4.11 is coarsely G-equivariant, meaning that for every g € G the following
diagram coarsely commutes, with constants independent of g:

W%Z

ol
w-Jt,z

Remark 6.3. The space (Z,8) is only required to have clean containers since this is the
only requirement to build the two graphs (X,), as pointed out in Remark 4.1.

Proof of Theorem 6.2. The group G acts on the domain set &, preserving nesting and
orthogonality, therefore there is an induced action on the minimal orthogonality graph X,
mapping every vertex U to g*(U). This action extends to the blow-up graph X if, for every
E-minimal domain U, every point p € CU and every g € G we set

g9(p) == g°(U)(p) € C(¢*()).

With a slight abuse of notation, we will denote the image of a vertex v € X under the action
of an element g € G simply by gv. Similarly, we will drop the superscript for the action on
X and set gU := ¢*(U).

Now we show that the induced action on (X)) preserves W-edges. Let X, A be two
maximal simplices and let ¥, A be their supports. Let W = (X n A)L, in the sense of
Notation 4.9 for the exceptional cases, and for every g € G let W’ = (¢£ ngA)*L. Clearly we
have that g\ = W’ since the action preserves orthogonality, and the co-level k = co-lv(W)
coincides with the co-level of gW since the action preserves nesting.

Now, if ¥ and A are W-adjacent then the realisation tuples b(2), b(A) are (k+ 1)A-close in
every coordinate space. Thus, in order to prove that g(X) and g(A) are again WW-adjacent,
one needs to show that also b(¢3), b(gA) are (k+1)\-close in every coordinate space. Notice
that we need the same threshold on distances, since the co-levels coincide.

Recall that, if A = {Uy,...,Us} then the realisation tuple of A is

by - | iV =U A
Vo Uv s, pg" otherwise.

If we apply g to all coordinates we get

gb(d)v) =4/ v 1y 9Ui otherwi
UgVA(gUi 9oy = UgVKQUi Pgy  otherwise.
where we used that, as discussed in Remark 1.13, we can assume that pg‘U/ = gpg for every

g,U, V. On the other hand the latter expression is the realisation tuple of gA by definition,
thus we just showed that for every V € & we have b(gA)gv = g(b(A)y). Therefore

degv (0(gA)gv; b(9%)gv) = degv (9(b(A)v), 9(b(X)v)) = dev (b(A)v, b(E)v),



MANY HHS ARE COMBINATORIAL HHS 37

where we used that the map CV — C(¢gV') induced by g is an isometry. This means that
if b(X) and b(A) are (k + 1)A-close in every coordinate space then so are b(¢g3) and b(gA),
and therefore g preserves W-adjacency.

Finally, in order to prove that the realisation map f: W — Z is coarsely G-equivariant we
just note that, as proved above, for every g € G and every maximal simplex A € W) we
have that the tuple b(gA), which coarsely coincides with the coordinates of f(gA), is equal
to gb(A). Moreover, as discussed in Remark 1.13, we can assume that for every g € G,
V € 6 and p € Z we have that mgy(gp) = gmv(p). This, applied to p = f(A), tells us that

mov (9f(A)) = gmv (f(A)) ~ g(b(A)v) = b(gA)gv ~ mav (f(9A)),

where ~ denotes equality up to a bounded error. Thus the coordinates of ¢gf(A) and
f(gA) coarsely coincide in every coordinate space, and by the uniqueness axiom we have
that dz(gf(A), f(9A)) < E. O

Next we turn our attention to actions with more structure:

Theorem 6.4 ([BHMS20|). Let (X, W) be a combinatorial HHS, and let G be a group
acting on X with finitely many orbits of subcomplexes of the form Lk(A), where A is a
simplex of X. Suppose moreover that the action on mazximal simplices of X extends to an
action on W, which is metrically proper and cobounded. Then G acts metrically properly
and coboundedly on W and with finitely many G-orbits of domains, and therefore it is a

HHG.

Proof. This is the “moreover” part of [BHMS20, Theorem 1.18|. As stated there, the theo-
rem requires the G-action on X to be cocompact, but as discussed in [BHMS20, Remark
1.19] the proof only uses that there are finitely many G-orbits of links of simplices. O

Definition 6.5. We will say that a group G satisfying the hypotheses of Theorem 6.4
is a combinatorial hierarchically hyperbolic group, meaning that the HHS structure from
Definition 1.14 is inherited from the action on a combinatorial HHS.

Here we show that, under a mild assumption on the action of G on &, every HHG whose
underlying HHS satisfies the hypotheses of Theorem 5.2 is a combinatorial HHG.

Theorem 6.6. Let G be a hierarchically hyperbolic group, and let (Z,&) be a hierarchically
hyperbolic space on which G acts metrically properly and coboundedly. Suppose that (Z,S)
has weak wedges, clean containers, the orthogonals for non-split domains property (3.9),
and the DPR property (3.10). Moreover, suppose that the action G O & has finitely many
orbits of unordered tuples {V1,...,Vi} of pairwise orthogonal elements, for every k < n.
Then G acts on the pair (X, W) constructed in Subsections 4.2 and 4.3, and the action
satisfies the hypothesis of Theorem 6.4. Hence G is a combinatorial HHG.

Proof. Combining Lemma 6.2 and Theorem 5.2 we get that (X,)V) is a combinatorial
HHS, that G acts on (X, W), and that the realisation map f : W — Z is a coarsely G-
equivariant quasi-isometry. The latter fact already implies that G acts metrically properly
and coboundedly on W, because the same properties hold for the G-action on Z.
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Then we are left to prove that the G-action on X has a finite number of orbits of the form
Lk(A), where A is a simplex of X. Recall that, by Lemma 4.3, the link of A is given by

Lk(A) = p~ (Lkg (A)) * (kpeao L1y (Av))-

Let A = {Uy,...,Us}, and let W = Al be its orthogonal complement. Then Lk(A) is
uniquely determined by the tuple {W, Uy, ..., Ux} and by the choice of Lk,-1(y,)(Ay;,) for
every . The assumption on the action of G on & tells us that there is a finite number of G-
orbits of tuples of the form {W, Uy, ..., U}, because these elements are pairwise orthogonal
by definition. Moreover, given such a tuple, for every i we have that Lkp—l(Ui)(AUi) can
only be one of the following:

o If Ay, = vy, is the tip of the cone then Lk, 1, (Ay,) = (€U is the base of the

cone;

o If Ay, is a point in the base then Lk, -1y, (Ay,) = vu,;

o If Ay, is an edge then Lk,-1(,)(Ap,) = I
Therefore there are three possible choices for every U;, and this concludes the proof that
G O X has finitely many orbits of the form Lk(A). O

Remark 6.7. If G is a HHG, but the underlying space (Z,&) does not have the DPR
property already, then in general it is not possible to find another HHG structure which
satisfies the hypotheses of Theorem 6.6. However, as we will see in Remark 7.9, if for every
U € & the stabiliser Stabg(U) acts coboundedly on CU, then one can add finitely many
orbits of E-minimal domains to & to ensure the DPR property.

7. SOME OTHER HYPOTHESES

The hypotheses of Theorem 3.15 are rather technical, so in this section we present some
more ‘“natural” ones, and we describe how they relate to each other and to the original ones.
We also show that, in certain cases, one can match the requirements of Theorem 3.15 by
adding (quite a lot of) bounded coordinate spaces.

We start with some possible requirements on the domain set.

Property 7.1. A hierarchically hyperbolic space has the strong orthogonal property if for
every two domains U = V there exists W = V such that ULW.

Property 7.2. A hierarchically hyperbolic space has the weak orthogonal property if for
every two domains U = V, if U is non-E-minimal there exists W = V such that UL1LW.

Both these properties imply the orthogonals for non-split domains property (3.9), since
every C-minimal domain is trivially split (it coincides with its unique Samaritan).

Property 7.3. A hierarchically hyperbolic space (£, &) has bounded split coordinate spaces
if there exists ¢ = 0 such that, for every U € & — S which is split and non-E-minimal, the
corresponding coordinate space CU has diameter at most c.

Lemma 7.4 (Comparison between properties). Let (£,8) be a normalised hierarchically
hyperbolic space with wedges and clean containers. Then each of the following properties
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implies the lower ones, meaning that if (Z,8) has some property (i) from the list, and
J > 14, then there exists a normalised HHS structure (£,8"), with & ¢ & and satisfying
wedges, clean containers and property (j):

(1)
(2)

Z.8) has the strong orthogonal property (7.1);

) has the weak orthogonal property (7.1);

(3) ) has the weak orthogonal property (7.1) and dense product regions (3.10);

(4) ) has orthogonals for non-split domains (3.9) and bounded split coordinate
spaces (7.3);

(5) (Z,6) has orthogonals for non-split domains (3.9) and dense product regions (3.10).

)

Z,6
Z,6
Z,6

o~~~ S~

Y

Proof of Lemma 7.4. The implication 1 = 2 is trivial. 3 = 4 follows from Lemma 7.5 and
the fact that E-minimal domains are split. The implication 2 = 3 is Lemma 7.7, while
Lemma 7.6 is 4 = 5. O

Lemma 7.5. If a normalised HHS (Z,&) has the DPR property (3.10) then it has the
bounded split coordinate spaces property (7.3).

We should think of the bounded split coordinate space property as the fact that product
regions are dense in split domains, and this is morally why Lemma 7.5 holds.

Proof. Let U be a non-minimal split domain and let W be one of its Samaritans. By
the DPR property, for every ¢ € CU there exists a minimal domain V & U such that
deu (q, pg) < Mjyp. Now it suffices to notice that, since W is a Samaritan, we must have that
either V=W or VLW, and by Lemma 1.3 we have that diamCU(pI{]V, p‘[;) < 10E. Therefore
q is (Mp + 10E)-close to p{¥, and therefore CU has diameter at most 2(My + 10E). O

The following lemmas show that, if one starts with more general hypotheses, there is often
a way to modify the HHS structure in order to ensure the DPR property.

Lemma 7.6. Let (Z,8) be a normalised HHS with wedges, clean containers and satisfying
the bounded split coordinate spaces property (7.3) and the orthogonals for non-split domains
property (3.9). Then there exists a normalised HHS structure (Z,8") such that & < &'
and (Z,6") has wedges, clean containers, the DPR property (3.10) and the orthogonals for
non-split domains property (3.9).

Lemma 7.7. Let (Z,8) be a normalised HHS with wedges, clean containers and the weak
orthogonal property (7.2). Then there exists a normalised HHS structure (Z,8") such that
S < & and (£,8') has wedges, clean containers, the weak orthogonal property (7.2) and
the DPR property (3.10).

The strategy for proving these two lemmas is the same, so we present an extensive proof
only of Lemma 7.6, which is more complicated. Here is a list of the changes which are
needed to prove Lemma 7.7:
e A domain TV must be added for every non-minimal U (thus not only if U is non-
split);
e The argument below to show the DPR property for wide domains will apply to all
non-=-minimal domains;
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e Since & and &’ will have the same non-=-minimal domains, the weak orthogonal
property will be preserved.

Proof of Lemma 7.6. What we will actually prove is that, if a normalised HHS (Z, &) has
the bounded split coordinate space property (7.3) then we can find a structure (2, &’) with
the DPR property. Moreover, if (£, &) has wedges, clean containers or the orthogonals for
non-split domains property then the procedure will preserve these properties.

We will say that a domain U € & is wide if U is non-split (and in particular non-=-minimal)
or U = S. For every wide domain U we do the following. Recall that we defined Fy as
the space of all 20F-consistent tuples. For every x = (zy)ycy € Fy we define a domain
TV whose coordinate space CTY is a point, and we let & be the union of & and these
new domains. Now we show that (Z,&') is an HHS, defining new projections, relative
projections and relations when needed.

Projections: The projection mpv : 2 — CTV is just the constant map, while all other
projections are inherited from the original structure.
Nesting: The domains 7Y are S-minimal, and 7 = V if and only if U S V. f U & V

U U
then we define the projection p‘T/’f = pg; moreover we set pgx = zy. The projections in

the opposite direction (namely, p¥U whenever U © V') are just the constant maps.

Finite complexity: Since we just added E-minimal domains inside non-E-minimal ones,
the complexity of the HHS structure remains the same.

Orthogonality and clean containers: If U,V € &, U is wide and x € Fy7, we say that
VLTV if and only if U LV. Moreover, if V is also wide and y € Fy we say that TV J_T;/ if
and only if ULV

oy
iU T S iv

Figure 7. The diagram, where arrows denote nesting, shows the only way two newly
added domains T and T} can be orthogonal inside some W € &.

Notice that containers already exist for any situation involving elements of &’ —&. Indeed,
suppose TV = W for some W € &, which implies that either U = W or U & W. In the
first case, no container is needed, since T is transverse to every V = U (and therefore also
to every Tyv if V' is wide). In the second case, every V € & which is properly nested inside
W and orthogonal to TV is also orthogonal to U, and therefore already nested inside the
container for U inside W. Moreover, if TZY = W and TgJ_TyV then V2 W and U1lW,

which means that 7, ,;/ is already nested inside the container for U inside W.



MANY HHS ARE COMBINATORIAL HHS 41

Conversely, if V € & and TV are orthogonal and properly nested in W then U & W and
ULV, thus TV is already nested inside the container for V inside W.

Now, if (£, &) has clean containers then so does (Z,&’). This is because, as argued above,
the container for T inside some W is the container for U inside W, and if this container
is orthogonal to U then it is also orthogonal to TY.

Transversality: If U,V € &, U is wide and = € Fy;, then by construction TV AV if and
only if one of the following holds:

e UMV in this case we define pV = pv,
e V C U: in this case we set Pv = zy.

Moreover, whenever Y € &' is transverse to Tg we set p¥U = CTxU .

Consistency: Since the only elements of & whose coordinate spaces are not points are
in &, the first two consistency inequalities are trivial. Moreover, the final clause of the

U
consistency axiom holds, since whenever U & V or UV we defined p‘:C” to be pg.

Uniqueness, BGI, large links: Since the only elements of &’ whose coordinate spaces
are not points are in &, these axioms for (Z,&’) follow from the corresponding ones for

(2,6).

Partial realisation: Let V7,..., V) € &' be pairwise orthogonal elements, and let p; € CV;.
We show that we can find a partial realisation point for {(V;,p;)}. Up to permutation we
can assume that V1,...,V; € G, forsomel < k, and V; = Tgi for every I < ¢ < k. Moreover,
we can assume that the family Vi,... V) is maximal, up to adding domains belonging to
G, since a realisation point for a bigger family is also a realisation point for the original
one.

Now, since Z is normalised, for every i < [ we can find y; € Fy, such that dy, (v, (vi), p;) is
uniformly bounded. Then, for any U € &' set

() fUCV, i<l

(3) qu =3 () itUc U, l <i<k;
V; .
UVirhU or vicu Py Otherwise.
Notice that, since V1, ...,V is a maximal family, the coordinate g7 is always well-defined.

Moreover, it is easy to see that (qy)pee is 20 E-consistent, thus by the realisation Theorem
1.7 there exists z € Z whose coordinates are uniformly close to (g )pee. It is also easy to
verify that z is a partial realisation point for {(V;,p;)}, since by Equation 3 it has the right
coordinates whenever U = V;, V;hU or V; & U for some i < k.

DPR: Let U € G be a non-minimal domain and let p € CU. If U is non-split then there
is z € Z such that 7y7(z) is uniformly close to p, by our normalisation assumption. Thus,
if we set * = (my(2))vey, we have that TV projects uniformly close to p in CU, and the
DPR property holds with the same constant as the one coming from the normalisation
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assumption. On the other hand, if U is split then CU is uniformly bounded by the bounded
split coordinate space property (7.3). Hence p € CU is uniformly close to pg forany V & U.

Additional properties: We now check that if (£, &) has one of the properties below then
so does (Z,&").
e Wedges: The new domains are all C-minimal, therefore for every TV, V' € &' we
can set
TU TV itV 2 Vv,
v & otherwise.

Then we just need to verify that, if V,W € & and there exists R € &’ which is
nested inside both, then the wedge of V' and W exists in &’. What we will actually
show is that V' and W already have a well-defined wedge inside &, call this wedge
Q, and that whenever R € &’ is nested inside both V and W then R = Q. Therefore
the wedge in & will coincide with the wedge in &.

Now let R € & as above. If R € & then Q exists and R © @, by the wedge
property for &. Otherwise R = T, g = U for some U and some x € Fy, and by
definition of the new nesting relations U must be already nested in both V and W'
Hence again @ exists and R= U = Q.

e Orthogonals for non-split domains property (3.9): Let U = V, with V € &
since the new domains are all minimal. If U is one of the new domains then U is
C-minimal, and therefore split. Hence, suppose that U € &. If U is non-split in &
then property (3.9), which holds for &, ensures the existence of some W _LU inside
V. Otherwise U is split in & with some Samaritan W, and we claim that U is again
split in &’ with the same Samaritan. Let Q € & be such that Q T U. If Q € &
then W = @ or W LQ, by definition of Samaritan, and we have nothing to prove.
Otherwise we have that Q@ = T = R = U for some non-split domain R € & and
some z € Fr. We cannot have that W = R, since then R would be split in & by
Remark 3.7; thus R (and therefore @) is orthogonal to W.

This concludes the proof. O

Remark 7.8. The weak wedge property is not preserved by the procedure of Lemma 7.6
to ensure the DPR property, since we are adding many “loose” =-minimal domains that
will not be nested in the original weak wedges. This is why in this section we are assuming
the “strong” wedge property.

Remark 7.9 (DPR for HHG with cobounded actions). If G is a HHG, but the underlying
space (Z,6) does not have the DPR property already, we cannot argue as in Lemma 7.6
to enforce it. This is because, if we add a domain of the form TV whenever z € Fy; and we
define the G-action on &’ in the obvious way (that is, by setting g7V = ng ), then this
action cannot have finitely many G-orbits of domains, since G is countable while Fi; might
be uncountable.

However, if for every U € & the stabiliser Stabg(U) acts coboundedly on CU, then we
can wisely hand-pick a finite number of orbits of points and add only the corresponding
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TV. Indeed, let Uy, ..., Uy be representatives for the G-orbits of non =-minimal domains
in &. For every U; choose z; € Fy,. Then for every g € G and every i = 1,...,k
add the domain ngi inside gU;. This way we are adding only finitely many G-orbits of
domains, and the DPR property follows from the coboundedness of the action on every
coordinate space. Then the rest of the proof of Lemma 7.6 runs verbatim to prove that
& =6u {ngim € G,i = 1,...,k} is again a HHS structure for Z with wedges, clean
containers and orthogonals for non-split domains.

Notice also that, if the HHS structure (Z,&) is normalised, then it is enough to require
that for every U € & the stabiliser Stabg(U) acts coboundedly on the product region Py.
Indeed, the projection 7y : Py — CU is coarsely surjective (by normalisation), coarsely
Lipschitz (by Definition 1.1 of a HHS) and Stabg(U)-equivariant (by Definition 1.12 of the
G-action), therefore if Stabg(U) acts coboundedly on Py then it also acts coboundedly on
CU.

In practice, the latter requirement is not particularly restrictive, since all "reasonable"
HHGs have cobounded actions on their product regions, and all known methods of produc-
ing new HHGs tend to preserve this property (unless one comes up with some very artificial
structures).

7.1. Orthogonal sets. Another property that one could require on the index set is that
orthogonal complementation is an involution. Such a property is satisfied by CAT(0) cube
complexes with (weak) factor systems (see Subsection 10.1) and is implied by the strong
orthogonality property (7.1) (Lemma 7.12). However, it goes in a somewhat different
direction than the orthogonals for non-split domains property (3.9), in the sense that is
not enough to prove Theorem 3.15. Indeed, in Section 10.2 we will provide an example
of an HHS Z with wedges, clean containers, dense product regions and where orthogonal
complementation is an involution, but such that the graph X from Definition 4.2 cannot
be the support of a CHHS structure for Z.

Definition 7.10. A partially ordered set (F, =) is called orthogonal if there exists a sym-
metric relation | on § such that the following hold for all U, V, W € §:

U4LU;

§ has a unique E-maximal element S/

ifUCVand VLW then ULW;

(Wedges.) if W & U, V, then there exists U A V € § such that U AV £ U, V, and

for all W E U,V we have that W =2 U A V;

e (Clean containers.) for all U such that there exists V LU, there exists Ut € §
such that, for all V LU we have that V = UL, and W LU if and only if W = U;

e (Orthogonality determines nesting.) U = V (resp. U & V) if and only if the

set of W for which VLW is contained (resp. properly contained) in the set of W’

for which ULW’. In particular, if nothing is L-related to V' then V is the unique

C-maximal element, while if there exists W 1V then V+ & U+ (resp. V+ & Ut) if

and only if U € V (resp. U = V).
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Lemma 7.11 (Orthogonality determines nesting for HHS). Let (Z,8) be an HHS with
wedges and clean containers. Then the following are equivalent:
. (CEmplementation is an involution.) For all U € & — {S}, U™ is defined and
U—="U.
e (Orthogonality determines nesting.) For all U,V € & — {S}, we have that
UcVifand only if V- ¢ UL,
If one (hence both) of the previous holds, then & is an orthogonal set.

Proof. The first part of the Lemma is proven exactly as [CRHK22, Proposition 6.1] (the
statement there is for real cubings, but as pointed out in [CRHK22, Remark 6.2] the same

argument works for HHSs). The second part follows from the properties of the domain set
S of a HHS (see Definition 1.1). O

Lemma 7.12. Let (£,8) be an HHS with wedges, clean containers and the strong orthog-
onal property (7.1). Then & is an orthogonal set.

Proof. Just notice that, for every U € & — {S}, the strong orthogonal property grants the
existence of UL; moreover U = UL, because otherwise we could find a V = U+ which
is orthogonal to U, and this would contradict the definition of U+. Now the conclusion
follows from Lemma 7.11. 0

8. NEAR EQUIVALENCE OF HHS AND COMBINATORIAL HHS

In this section we show that, if the hypotheses on (Z,&) are the strongest possible, then
the combinatorial HHS (X,)V) arising from the construction has the following two nice
properties:

Definition 8.1. A combinatorial HHS (X, W) has simplicial containers if for any simplex
A c X there exists a simplex ® < X such that

Lk(Lk(A)) = Lk(®).
Definition 8.2. A combinatorial HHS (X, W) has simplicial wedges if for any two simplices
A, > c X there exists a simplex II which extend X such that
Lk(A) n Lk(X) = Lk(II).

Theorem 8.3. Let (Z,6) be a normalised hierarchically hyperbolic space. Then Z has
wedges, clean containers and the strong orthogonal property (7.1) if and only if there exists
a CHHS (X, W) with simplicial wedges and simplicial containers such that VW is quasi-
isometric to Z.

Proof. First we show that, if (X,)V) has simplicial wedges and simplicial containers then
W, with the HHS structure described in Subsection 2.2, has the following properties:

e Wedges: given two non-maximal simplices X, A, if there exists a simplex I' such
that [I'] © [¥] and [I'] = [A], then

LK(I') € Lk(E) ~ Lk(A) = Lk(II)
for some IT depending only on X, A. Therefore [X] A [A] = [II].
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e Strong orthogonal property: Let [A] & [A’]. Now
Lk(Lk(A)) n Lk(A") = Lk(®) n Lk(A’) = Lk(IT)

for some simplices ®,II whose existence is granted by simplicial containers and
wedges, respectively. Thus [II] = [A’], and since Lk(IT) € Lk(Lk(A)) we have that
[TT]L[A].

e Clean containers: Let [A] & [A’] and suppose that there exists [X] & [A’] which
is orthogonal to [A]. By definition

Lk(S) < Lk(Lk(A)) n Lk(A") = Lk(II),
|

where IT is the simplex defined above. Then [X] & [II], which means that [II] is the
container for [A] inside [A’]. Moreover, since [II] L[A], this container is also clean.

Now we turn our attention to the converse statement. Let (Z,&) be a HHS with wedges,
clean containers and the strong orthogonal property. By Lemma 7.7 we can find a structure
(Z,6') with wedges, clean, containers, the weak orthogonal property and the DPR property.
Then Theorem 3.15 applies to (£, 8&’) and outputs a combinatorial HHS (X, W) where W
is quasi-isometric to Z.

(X, W) has simplicial wedges: Let ¥ and A be the supports of ¥ and A, respectively,
and let ¥+, Al € & be their orthogonal complements. Let ® = A n Lk(X), and let Y
be the orthogonal complement of ® inside ¥+, that is, Yy = (T * @)L. Notice that Yj
cannot be one of the minimal domains 7 that were added in Lemma 7.7 to ensure the
DPR property. This is because, if Yy = TV, then TV is orthogonal to ¥ x ®, and by
construction U is orthogonal to the same simplex. But by definition of Yy we must have
that U C Yy = TV © U, which is a contradiction.

Part 1: If (£)+ and (A)+ don’t have any nested domain in common, we formally set
Wo = & and we skip to Part 2. Otherwise we can consider the wedge Wy = (X) A (A)*.
Notice that Wy cannot be one of the minimal domains from Lemma 7.7. This is because,
if Wo = TY, then TV is orthogonal to both ¥ and A, and by construction U is also
orthogonal to the two simplices. But by definition of W as a wedge we must have that
vcW,=T g C U, which is a contradiction. This means that Wy € G as well.

Part 2: Now suppose that Wy has been defined as in Part 1. If Wy = Y, then we set
© = @. Otherwise, by the strong orthogonal property, which holds for every two elements
of the original domain set &, we can find a E-minimal domain Vi E Y such that Vo LWy
(if Wo # ). Now let Y] = {V()}%fo, which is again in & and contains Wy, and we can argue
as above.

In both cases we can find a (possibly empty) simplex © = {Vj,...,Vi} of X such that
Wy = (X« ® % ©)*, and this readily implies that

(4) Lk(X) n Lk(A) = Lk(X « @ » ©).

From now on we can argue exactly as in Lemma 5.7 (more precisely, we can repeat the
arguments of the paragraph “Finding the extension of ¥”), and find a simplex supported
in ¥ « ® x © which extends ¥ and whose link is Lk(3) n Lk(A).
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(X, W) has simplicial containers: Let A € X be a simplex and let A be its support.
Let Ay © A be the domains U such that Ay is a single point, and let Ay — A be the
domains such that Ay is an edge. Taking the link of the expression in Lemma 4.3, which
described the shape of the link of A inside X, we have that

Lk(Lk(A)) = p~ (Lk(Lk(A))) n (1) Lkx (Lk,-1 0y (Ap)).
UeA,

Thus v € X belongs to Lk(Lk(A)) if its support V lies in (Lk(Lk(A))), and either V LA,
or Ve Ay and v € Lk,- 1y (Lky-1(v)(Av)). Therefore, let W = (AL, Again, W does
not coincide with any TU, because if TV = W then TV LAL, and therefore also U LA™L.
Then again W € G, and the strong orthogonal property implies that there exists a simplex
© inside X such that W = ©1. Notice that every U € A is nested in W by construction.
Now define a simplex ® with support © * A; by choosing an edge for every domain U which
is a vertex of ©, and a point gy € Lk, -1y (Ay) for every U € A1. Thus by construction

Lk(®) = p~ (Lk(6 x A1) * | ] Lk,-11(qv) =
UelA;
= p~ ! (Lk(Lk(A))) n ﬂ Lkx (Lk,-1(7)(Av)) = Lk(Lk(A)),

UEAl
and we are done. O

Remark 8.4. If in the previous proof the original structure (£, &) already has the DPR
property (3.10) then there is no need to invoke Lemma 7.7, and the whole proof of Theorem
8.3 works with & instead of &’. In other words, if (Z£,&) already has the DPR property
then the combinatorial HHS (X, W) is exactly the one constructed in Section 4.

9. MAPPING CLASS GROUPS ARE COMBINATORIAL HHS

Throughout this section, let S be a surface obtained from a closed, connected, oriented
surface after removing a finite number of points and open disks; we call such an S a surface
of finite-type with boundary.

It was proven in e.g. [BHS19, Theorem 11.1] that, if S has no boundary, then it admits
a HHG structure. In this Section we first extend this result to surfaces of finite-type with
boundary (see Remark 9.3); then we apply our main Theorems to produce two combinatorial
HHG structures, one whose underlying graph is a blow-up of the curve graph (Theorem
9.8), and one with combinatorial wedges and combinatorial containers (Theorem 9.9).

9.1. On the meaning of subsurface. The “usual” HHG structure for a mapping class
group involves open subsurfaces, but it will be convenient here to consider a more general
type of subsurfaces; here we present the two notions and compare them.

Definition 9.1 (|BKMM12, Section 2.1.3]). A subsurface Y < S is essential if it is the
disjoint union of some components of the complement of a collection of disjoint simple
closed curves, so that no component is a pair of pants and no two annuli components are
isotopic.
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Recall that nesting of subsurfaces is defined as follows: U is nested in V if U is contained
in V' (up to isotopy) and no isotopy class representative of U is disjoint from an isotopy
class representative of V. (This last clause is only relevant for annuli and unions of annuli;
an annulus might be isotopic to a non-essential annulus of another subsurface.)

Theorem 9.2 ([BHS19, Theorem 11.1]). Let S be a surface of finite-type with boundary.
Its mapping class group MCG(S) is an HHG with the following structure:

& is the collection of isotopy classes of essential subsurfaces.

For each U € & the space CU 1is its curve graph.

The relation E is nesting, L is disjointness and A is overlapping.

For each U € &, the projection my : MCG(S) — CU is constructed using the
subsurface projection.

For U,V € & satisfying either U = V or UMV, the projection is pY = my (0U) =
CV, while for V= U the map pg : CU — 2V s the subsurface projection.

Remark 9.3. In previous literature, the HHG structure above is only considered for sur-
faces without boundary, but everything goes through as above for surfaces with boundary
(including braid groups). There are a few ways to see this, besides inspecting |[BHS19,
Section 11]. One is to regard MCG(S) as above as a subgroup of the mapping class group
of the double of S along all boundary components, by extending mapping classes to be the
identity on the complement of S. In this setting, MCG(S) acts properly and coboundedly
on Fg (with finitely many orbits of subsurfaces nested into \S), giving the required structure.

We now describe a different HHS structure, whose index set is made of subsurfaces which
might include some of their boundary components, and then discuss how it relates to the
one from Theorem 9.2.

9.1.1. The new index set.

Definition 9.4 (Block). A block is (the isotopy class of ) a subsurface of one of the following

types:

(a) a closed annulus which does not bound a disk or a single puncture;

(b) a connected, non-annular subsurface of complexity at least 1, with some (possibly none)
of its boundary components included.

The included boundary of a block U of type (b) is the set of curves in its topological
boundary (relative to S) which belong to U. With a slight abuse of notation, we say that
the included boundary of an annulus is its core curve.

Let nesting between blocks correspond to containment (up to isotopy), with the convention
that, if «v is a curve in the topological boundary of a block U, then v £ U if and only if v
belongs to the included boundary of U. Moreover, let L be disjointness of blocks (up to
isotopy), but with the convention that:

e if v is a curve in the topological boundary of U, then v 1U if and only if v does not
belong to the included boundary of U;
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e if U and V are blocks of type (b), and they share a component of the included
boundary, then they are not orthogonal.

This way, nesting and orthogonality are mutually exclusive, meaning that if two blocks are
orthogonal then they are not E-related.

Definition 9.5 (Admissible collection). A collection of pairwise orthogonal blocks Uy, . .., Uy
is admissible if, whenever two blocks U; and U; (which might coincide) have two topological
boundary components which are isotopic, then none of these components belongs to the
included boundary of the respective block.

See Figure 8 to understand the forbidden cases.

O\
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Figure 8. Representation of the forbidden and allowed collections of blocks. Dashed
lines represent open boundaries (those which do not contain the boundary curve), full
lines represent closed boundaries, and dotted lines mean that two or more blocks have
been glued by identifying their boundaries.

The forbidden cases are as follows: no two blocks (which might coincide) have isotopic
included boundary components (upper left); no annulus is isotopic to a boundary
component of another block (upper centre); no included boundary component of a
block is isotopic to a topological boundary component of another block (upper right).
Hence, if two blocks have isotopic boundary components, then either none of these
components is included (lower left), or the blocks are glued along the boundary, thus
forming a single block (lower right).

Let & be the set of all admissible collections of blocks, which we see as subsurfaces of S
(up to isotopy). Extend nesting and orthogonality to &', with the same conventions about
boundary curves. Note that =-minimal elements of &’ are exactly annuli of type (a).

Define the interior of an admissible collection as the union of the interiors of its blocks of
type (b). Moreover, define the included boundary of an admissible collection as the union
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of the included boundaries of its blocks. Notice that if U,V € & then U = V if and only
if the interior of U is nested in the interior of V', and the included boundary of U is nested
in the included boundary of V.

Coordinate spaces. Now, let V' be a block. Define CV as follows:

e If V is a closed, essential annulus, let CV be its annular curve graph;

e If V is a connected, open subsurface of complexity at least 1, let CV be its curve
graph;

e If V is of type (b) and its included boundary is non-empty, let CV' be the join of
the curve graph of its interior and the included boundary.

The coordinate space of an admissible collection is, by definition, the join of the coordinate
spaces of its blocks.

Remark 9.6. Notice that, if U € &', then either U is an annulus or a connected, open
subsurface of complexity at least 1, or CU is uniformly bounded since it is a join.

Projections. For every U € &', let my : MCG(S) — CU be the subsurface projection.
Analogously, for every U,V € &' such that U & V, let pg : CV — CU be the subsurface
projection. Moreover, if CV is bounded then define pg by choosing any point in CV;
otherwise V must be a connected, essential subsurface, and therefore at least one of the
topological boundary curves of U is nested in V', so one can set pg = 0U n V. Finally,
for every U,V € &' such that UAV let pg be the subsurface projection of the topological
boundary of U inside CV.

Remark 9.7 (Comparison with the index set from [BKMM12|). To pass from our new
index set &’ to &, one must exchange every subsurface U with included boundary for the
disjoint union of the interior of U and open annuli corresponding to the included boundary
curves. This procedure preserves nesting, orthogonality, curve graphs, and projections.
Therefore, from the fact that (MCG(S), &) is a HHG one can deduce that (MCG(S), &) is
a HHG. The main point here is that the two structures have the same unbounded coordinate
spaces, namely the curve graphs of connected open subsurfaces that are not pairs of pants,
which takes care of most of the axioms (e.g. uniqueness, which constitutes the majority of
the work in [BHS19, Section 11]).

9.2. First CHHS structure. Our next goal is to present the first CHHS structures for
MCG(S), whose underlying graph X is a blow-up of the coordinate space CS. This will
answer a question from [BHMS20, Subsection 1.6]. As mentioned in Remark 1, the graph W
of this structure will be very similar to the graph of complete clean markings from [MMO00].

Theorem 9.8. Let S be a surface of finite-type with boundary. There exists a combinatorial
HHG structure (X, W) for MCG(S), where X is the blow-up of the curve graph of S,

obtained by replacing every curve with the cone over its annular curve graph.

Proof. Tt is enough to show that (MCG(S),&’), with the coordinate spaces and the pro-
jections defined as above, satisfies the hypotheses of Theorem 6.6.
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e Wedges: Let U,V € &, and let W be the intersection of their interiors, which is a
disjoint union of open pairs of pants and open subsurfaces of complexity at least 1.
First, for every curve = in the topological boundary of W which is nested in both
U and V, glue to W the closed annulus with core =, so that one (resp. both) of
the boundary curves of the annulus is identified with one (resp. two) curves in the
topological boundary of W. Then replace every component of W which is a pair
of pants with its included boundary (in particular, one has to remove open pairs
of pants). Let W’ the surface obtained after this procedure, and let W’ be the
disjoint union of W’ and every annulus which is a block of both U and V. Now,
by construction W” is in & (since the gluing procedure prevents the forbidden
cases from Figure 8 from appearing), and it is nested in both U and V. Moreover
W" is the wedge of U and V, since T' € &' is nested in both U and V if and
only if its interior is nested in the interior of W (which is the intersection of the
interiors, without the pants components), and its included boundary is nested in
the intersection of the included boundaries.

e Clean containers: whenever U & V € &’ and there exists W € &’ which is
nested in V' and orthogonal to U, consider the subsurface obtained from V — U
after replacing every pair of pants with its included boundary (in particular, one
has to remove open pairs of pants). Let Y be the resulting subsurface, which is
non-empty since it contains W. First we prove that the connected components of
Y are blocks. Indeed, the connected surfaces which are not blocks are annuli with
at most one boundary included, or pairs of pants with some boundary components
included. Now, one of the connected components of Y is an open annulus if and
only if two blocks of U share a common curve in their included boundary, and this
would mean that these blocks are not orthogonal by our convention. Moreover, one
of the connected components of Y is an annulus with exactly one boundary curve
included if and only if two blocks of U fall in one of the forbidden cases from Figure
8. Finally, we manually replaced every pair of pants with its included boundary.
Hence Y is a disjoint union of blocks. The same kind of arguments shows that the
blocks of ¥ cannot share curves in their included boundaries (otherwise U would
contain an open annulus), and cannot fall in one of the forbidden cases from Figure
8 (otherwise U would contain an annulus with exactly one boundary component
included). This shows that Y is an admissible collection, i.e. an element of &',
and by construction it is orthogonal to U and nested in V. Being the maximal
subsurface with these properties, Y is also the clean container for U inside V.

e Orthogonals for non-split domains property (3.9): Let U & V be two sub-
surfaces. If U has a connected component which is an annulus then U is split,
and such annulus is one of its Samaritans. Otherwise U is the disjoint union of
finitely many subsurfaces of complexity at least 1, possibly with boundary. If there
exists a connected component of V' whose intersection with U is trivial, then such
component is orthogonal to U. Otherwise there must be a curve  in the boundary
of U relative to V', which must therefore be essential in V. Then the associated
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annular domain A, is nested in V'; moreover, A, is either nested in U or disjoint
from U, depending on whether the boundary curve is included in U or not. In the
former case, U is a split domain, and A, is one of its Samaritans; in the latter, A,
is orthogonal to U.

e Dense product regions (3.10): let U € &' be a non-minimal domain. Then either
U is a connected, open subsurface of complexity at least 1, and its curve graph is
covered by the projections of the annuli it contains, or CU is uniformly bounded,
as pointed out in Remark 9.6.

e Cofinite action: The action of the mapping class group on & has finitely many
orbits of pairwise disjoint subsurfaces. This is a consequence of the change of
coordinate principle (see e.g. [FM12, Section 1.3.3]).

This proves the Theorem. U

9.3. Second CHHS structure, with better properties. Notice that the HHS structure
from Theorem 9.8 does not satisfy the weak orthogonal property (7.2). To see this, let V
be an open, connected subsurface of complexity 2 and let U be the union of two disjoint,
essential annuli inside V. Then U is non-minimal, but V — U is a disjoint union of open
pairs of pants and therefore cannot contain any element of &'.

However, we can find a larger index set to ensure even the strong orthogonal property (7.1):

Theorem 9.9. Let S be a surface of finite-type with boundary. There exists a combina-
torial HHG structure for MCG(S) with simplicial wedges (Definition 8.1) and simplicial
containers (Definition 8.2).

Proof. The proof is very similar to that of Theorem 9.8. First, we weaken Definition 9.4,
by allowing a block to be also a pair of pants, with some (possibly none) of its boundary
components included. Define nesting and orthogonality between blocks as before, with the
same conventions about the included boundary components. This allows one to define the
collection &” of admissible blocks, as in Definition 9.5. Notice that now the =-minimal
elements of &” are all closed annuli of type (a), and all open pants.

Define the interior and the included boundary of an admissible collection as before, but
now the interior also includes the interior of the pants components. Again, notice that if
U,V € & then U = V if and only if the interior of U is nested in the interior of V', and the
included boundary of U is nested in the included boundary of V.

Define the coordinate spaces as before, and set the coordinate space of an open pair of pants
to be a point. Again, the only elements of &’ with unbounded coordinate spaces are annuli
and connected, open subsurfaces of complexity at least 1, because the other coordinate
spaces are either points or joins.

Finally, define the projections as above, using subsurface projections. With the same tech-
niques of [BHS19, Theorem 11.1], one can then show that (MCG(S),&"”) is a HHG.

Next, we observe that (MCG(S),&”) has the following properties. The proofs are very
similar to those which appear in Theorem 9.8 (and even easier since we do not have to
remove pairs of pants), but we put them here for clarity:
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e Wedges: Let U,V € &”, and let W be the intersection of their interiors, which is a
disjoint union of open pants and open subsurfaces of complexity at least 1. Then,
for every curve 7 in the topological boundary of W which is nested in both U and V,
glue to W the closed annulus with core ~, so that one (resp. both) of the boundary
curves of the annulus is identified with one (resp. two) curves in the topological
boundary of W. Let W' the surface obtained after the gluing, and let W” be the
disjoint union of W' and every annulus which is a block of both U and V. Now, by
construction W” is in &” (since the gluing procedure prevents the forbidden cases
from Figure 8 from appearing), and it is nested in both U and V. Moreover, the
interior of W” is the intersection of the interiors, and the included boundary of W”
is the intersection of the included boundaries. This shows that W” is the wedge
of U and V, since T € &' is nested in both U and V if and only if its interior is
nested in the intersection of the interiors, and its included boundary is nested in
the intersection of the included boundaries.

e Clean containers and the strong orthogonal property (7.1): whenever U
V € &”, consider the subsurface V —U. First notice that the connected components
of V' — U are blocks. Indeed, the only connected subsurfaces which are not blocks
are annuli with at most one of the two boundary curves included. Now, one of
the connected components of V' — U is an open annulus if and only if two blocks
of U share a common curve in their included boundary, and this would mean that
these blocks are not orthogonal by our convention. Moreover, one of the connected
components of V' — U is an annulus with exactly one boundary curve included if
and only if two blocks of U fall in one of the forbidden cases from Figure 8. Hence
V —U is a disjoint union of blocks. The same argument with U and V — U swapped
shows that the blocks of V' — U cannot share curves in their included boundaries,
and cannot fall in one of the forbidden cases from Figure 8. This shows that V —U is
an admissible collection, i.e. an element of &', and by construction it is orthogonal
to U and nested in V. Being the maximal subsurface with these properties, V — U
is also the clean container for U inside V.

e Dense product regions: let U € &” be a non-minimal domain. Then either U is
an essential open subsurface, and its curve graph is covered by the projections of
the annuli it contains, or CU is uniformly bounded, as pointed out above.

e Cofinite action: the MCG(S)-action on &” has finitely many orbits of tuples of
pairwise orthogonal domains, again as a consequence of the change of coordinates
principle.

Now the hypotheses of Theorem 8.3 are satisfied, and we can find a combinatorial HHS
(X, W) with simplicial wedges and simplicial containers. Since (MCG(S),&’) already has
dense product region, the pair (X, W) is exactly the one constructed in Section 4 from
(MCG(S),&"), as pointed out in Remark 8.4. Hence, by Theorem 6.6 we have that (X, W)
inherit an action of MCG(S) that makes the latter into a combinatorial HHG, and we are
done. O
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10. WHY ORTHOGONALS FOR NON-SPLIT DOMAINS?

The main goal in this section is to use a simple example of an HHS — a CAT(0) cube
complex with a factor system — to illustrate the necessity of the orthogonals for non-split
domains hypothesis (3.9).

Factor systems yield examples of HHS structures where the index set is an orthogonal set in
the sense of Definition 7.10. It would be illuminating to find conditions on an orthogonal set
allowing one to modify the HHS/HHG structure so that some version of the orthogonality
properties ((3.9), (7.2) or (7.1)) hold. We speculate on this below, and in particular on
intriguing relations with problems in lattice theory, namely embedding a complete ortho-
lattice inside an orthomodular one, see Remark 10.20.

In this section, we use notation from [CRHK22|; see also [HS20] and [BHS17b, Section §|.

10.1. Background on factor systems for CAT(0) cube complexes. For the rest of
the Section, let Z be a CAT(0)-cube complex.

Definition 10.1 (Hyperplane, carrier, combinatorial hyperplane). A midcube in the unit
cube ¢ = [—%, %]” is a subspace obtained by restricting exactly one coordinate to 0. A
hyperplane in Z is a connected subspace H with the property that, for all cubes ¢ of Z,
either H n ¢ = & or H N ¢ consists of a single midcube of ¢. The carrier N'(H) of the
hyperplane H is the union of all closed cubes ¢ of Z with H nc¢ # . The inclusion H — Z
extends to a combinatorial embedding H x [—1, 1] => N(H) < X identifying H x {0} with
H. Now, H is isomorphic to a CAT(0) cube complex whose cubes are the midcubes of the
cubes in N'(H). The subcomplexes H* of N'(H) which are the images of H x {+1} under
the above map are isomorphic as cube complexes to H, and are combinatorial hyperplanes

in Z. Thus each hyperplane of Z is associated to two combinatorial hyperplanes in N'(H).

Definition 10.2 (Gate maps). For any convex subcomplex ) < Z there is a gate map
gy : Z — Y such that, for any other convex subcomplex )’ € Z, the hyperplanes crossing
gy()') are precisely the hyperplanes which cross both ) and ).

Gate maps are fundamental in the study of cube complexes and median spaces; see, for
instance, [BHS17b, Section 2| for additional background.

Definition 10.3 (Parallelism). The convex subcomplexes F' and F’ are parallel, written
F || F', if for each hyperplane H of Z, we have H n F # ¢ if and only if H n F’ # (.

Definition 10.4 (Orthogonality, orthogonal complement). The convex subcomplexes F
and F’ are orthogonal, written F'LF’ if the inclusions ' — Z and F’/ — Z extend to a
convex embedding F' x F/ — Z.

Given a convex subcomplex F', let Pr be the smallest subcomplex containing the union of
all subcomplexes in the parallelism class of F. By e.g. [HS20, Lem. 1.7] there is a cubical
isomorphism Pp — F x F+ where F- is a CAT(0) cube complex which we call the abstract
orthogonal complement of F. For any f € F | the inclusion Pr — Z induces an isometric
embedding {f} x F1 — Z whose image is a convex subcomplex that we call the orthogonal
complement of F' at f and denote {f} x FL. Observe that {f} x F* and {f'} x F* are
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parallel for all f, f' € F(© (see [HS20, Lem. 1.11]). When the base point is unimportant,
we sometimes abuse notation and write F- to refer to one of these parallel copies.

Lemma 10.5. Let F' < Z be a convex subcomplez, let f € FO, and write F*+ = {f} x F*.
Suppose that F' is a convex subcomplex such that F LF'. Then F' is parallel to a subcomplex

of F-. Conversely, if F' is a convex subcomplex of Ft, then there exists F" parallel to F'
with F" LF.

Proof. This follows easily from [HS20, Lem. 1.11]; see for instance the proof of [HS20,
Theorem C.|. O

Definition 10.6 (Candidate factor system). A candidate factor system b is a collection of
non-trivial convex subcomplexes of Z (where “non-trivial” means that we exclude singletons)
that satisfy the following properties:

(1) Z € b, and for all combinatorial hyperplanes H of Z, we have H € b;
(2) if F,F" € b then gp(F’) € b;
(3) if F € h and F’ is parallel to F', then F' € b.

Definition 10.7 (Hyperclosure). The hyperclosure b of Z is the intersection of all candidate
factor systems, and therefore the unique candidate factor system which is minimal by

inclusion. In other words
o0
h= (U h,~> — {singletons},
i=1

where:

e fj; is the collection of all subcomplexes which are parallel to combinatorial hyper-
planes, together with the whole space Z;
o Foralli>1, hiy1 = {F|F | g, (F2), F1, F> € b;}.

Lemma 10.8 (Characterisation of b, [HS20, Theorem 3.3|). Let Z be a locally finite CAT(0)
cube complex, and let § be its hyperclosure. Then a convex subcomplex F' belongs to b if and
only if there exists a compact, convex subcomplex C such that F = C+.

Definition 10.9 (Weak factor system). Let h be a candidate factor system, and let b /n the
set of parallelism classes of subcomplexes in h. If there exists N € N such that N bounds
the length of chains in the partial order of h given by inclusion, then b . s a weak factor
system.

We denote the parallelism class of the subcomplex F' € h by [F] € h/.. Two elements
[F'],[F'] € b, are nested (resp. orthogonal), and we write [F] & [F'] (resp. [F]L[F']) if
there exists two representatives F, F’ such that F < F’ (resp. FLF").

The class of CAT(0) cube complexes which admit weak factor systems is quite large. For
example, virtually special groups, in the sense of Haglund-Wise [HWO08|, act geometrically
on CAT(0) cube complexes with weak factor systems by [BHS17b, Proposition B]. The more
general class of CAT(0) cube complexes with geometric group actions and weak factor
systems is characterised in [HS20], and includes some notable non-special examples, like
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irreducible lattices in products of trees, and certain amalgams of these [Hag23|. There
are other amalgams of such lattices that provide the first examples of proper cocompact
CAT(0) cube complexes not admitting any weak factor system [She22].

Following [BHS17b|, one can endow a CAT(0) cube complex with an HHS structure when
the hyperclosure gives a weak factor system; this is analysed in more detail in [CRHK22,
Section 20]. We summarise this here in order to connect the existing results more explicitly
to the hypotheses of Theorem 3.15.

The first lemma is needed to verify the clean containers property. It is proved in [HS20,
Prop. 5.1] as part of a more complicated statement whose other parts rely on the presence
of a cocompact group action; see [CRHK22, Rem. 20.7]. So, for the avoidance of doubt,
we extract the exact statement (with the same proof as in [HS20]) here:

Lemma 10.10. Let Z be a CAT(0) cube complex and let b be its hyperclosure. If 5/~

is a weak factor system then, for every F' € h—{Z} and every z € FO) | the subcomplex
FL = {x} x F belongs to b.

Proof. We will use [HS20, Lem. 5.2] after some preliminary setup. Let {H;}ie; be the
set of hyperplanes that are dual to edges of F' incident to x. For i € I, let Hi+ be the
combinatorial hyperplane in which the carrier of N(H;) intersects the H;—halfspace of Z
containing x; in particular, z lies in H:r Let Y = (e, H;r Observe that for any finite
I' = I, we have that Y (I') := (\,.p H;t € b, unless Y (I') is a single point (recall that we
do not allow single points in the hyperclosure). Assume the former.

By the assumption that the set of parallelism classes represented in the hyperclosure is a
weak factor system, together with the observation that [Y (I')] = [V (I”)] when I” < I', we
see that there exists a finite subset Iy = I such that Y = Y (Iy). Hence Y € b, or Y consists
of a single vertex.

Now let S be the set of all combinatorial hyperplanes H* such that the associated hyper-
plane H (i.e. the hyperplane H such that the usual identification of N(H) with H x [—%, %]
identifies H x {+1} with H*) crosses F. By [HS20, Lem. 5.2], F* = (\y1.g0v(H*). We
now argue as before. First, note that if &’ < S is finite, then A(S') = (\yieg oy (HY)
belongs to b, or it is a single point.

As before, if &’ = §” are finite subsets of S, we have A(S”) < A(S’), so our assumption that
b gives a weak factor system again implies that there is a finite S’ such that F+ = A(S).
Hence, either F- € b, or F- is a single point.

To complete the proof, we rule out the latter possibility as follows. By hypothesis, ' # Z.
By Lemma 10.8, there exists a (compact) convex subcomplex C' = Z with C+ = F, since
F € b. This means that FLC, so Lemma 10.5 implies that, up to parallelism, C' < F*, so
it remains to show that C' is non-trivial. But if C' is trivial, then C' 1 Z, so by Lemma 10.5,
Z = Ot = F, contradicting that F is a proper subcomplex. O

Remark 10.11 (Why are singletons excluded?). Let b /~ denote the set of parallelism
classes in the hyperclosure . In general, one gets from a weak factor system to an HHS
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structure using Theorem 10.12 below. The additional property that the index set is an or-
thogonal set can be arranged by using the weak factor system provided by the hyperclosure,
when it exists — see Theorem 10.13.

Recall that we have defined h so as to exclude subcomplexes consisting of a single vertex.
Note that any two such subcomplexes {z}, {y} are parallel. Moreover, [{z}] = [F], for any
F e b. On the other hand, we also have [{z}]L[F]. This would not be allowed in an HHS
structure, so we avoid the issue by excluding {z} from the hyperclosure. For non-trivial
subcomplexes, this problem does not occur, by, for instance, [CS11, Prop. 2.5| and the fact
that hyperplanes do not cross themselves.

In [BHS17b|, something more radical is allowed: one can exclude all subcomplexes below
some fixed diameter, and still get an HHS structure. But this may cease to satisfy the
conclusion of Lemma 10.10. This is not a problem from the point of view of clean containers,
but it can break “orthogonality determines nesting” by creating non-=—maximal [F'] that
are not orthogonal to anything in the index set.

Theorem 10.12 (see e.g. [CRHK22, Proposition 20.4]). Let Z be a CAT(0) cube complex
with a weak factor system b,.. Then (2,9 /N) is a hierarchically hyperbolic space with
wedges, where the coordinate spaces C[F'], [F] € b, and the projections mjp) : Z — C[F]
are as in [BHS17b, Remark 13.2].

The next theorem refines the previous one by strengthening the conclusions about the index
set. Compare to the very similar [CRHK22, Prop. 20.6|, where is not explicit that the HHS
structure comes from the hyperclosure. Note, also, that the clean containers property of
the HHS structure from Theorem 10.12 is observed (in the presence of a group action) in
[HS20].

Theorem 10.13. Let Z be a CAT(0) cube complex which admits a weak factor system,
and let b be the hyperclosure of Z. Then b, is a weak factor system and an orthogonal

set. In particular, (Z, E/~) is a HHS with wedges, clean containers, and where orthogonality
implies nesting.

Proof. In the proof of [CRHK22, Proposition 20.6] it is shown that, if Z admits a weak
factor system, then there exists a weak factor system f);~ which consists of all equivalence
classes of subcomplexes of the form

9H, ( e (an71 (Hn)) e ')7

where Hjy,...,H, are combinatorial hyperplanes and n > 0. By Definition 10.7 of the
hyperclosure b, we see that b’ < b, and they must coincide since the hyperclosure is the
minimal candidate factor system. Hence, the quotient of the hyperclosure by parallelism is
a weak factor system, and therefore (Z, 6/~) is a HHS with wedges by Theorem 10.12.
Now, by Lemma 10.10, if 5/~ is a weak factor system then, for every F € b, we have that
F ep. In particular, this shows that h /~ has clean containers, since if [F], [F'], [C] € h /~
are such that [F],[F'] £ [C] and [F]L[F’], then the clean container for [F] inside [C] is
[C] A [F]+, where [F]* = [F1], as provided by Lemma 10.5.
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Moreover, by [HS20, Corollary 3.4] we have that F1L = F whenever F e 6,7and by Lemma
7.11 this is equivalent to the fact that orthogonality determines nesting in b,.. (|

Remark 10.14. The HHS structure (Z, 6/~) need not have the DPR property. When it
does, this can be verified as follows. For each [F] € b /~, the HHS structure from [BHS17b]
has as the coordinate space C[F'] the factored contact graph, which can be viewed as a
copy of F with additional edges added to cone off subcomplexes of the form gp(F’), where
gr : Z — F is the gate map and F’ € h. Now, the hyperplanes of F have the form H n F,
where H is a hyperplane of Z crossing F'. This shows that subcomplexes of F' of the form
gr(F") cover F. This implies DPR provided sufficiently many of those subcomplexes to
coarsely cover F are actually in b, i.e. they are not singletons. So, for example, (Z,b /~)

has the DPR property provided there exists a constant K such that for all non E-minimal
F e b and all x € F, there exists F’ € b such that dz(z, gp(F’)) < K and |gp(F')| > 1.

10.2. The counterexample. In this Subsection we present a HHS (Z,&) which satis-
fies all hypotheses of the main Theorem 3.15 except the orthogonals for non-split domains
property (3.9), and we prove that the graph X from Definition 4.2, constructed using the co-
ordinate spaces in the HHS structure, cannot be the underlying graph of any combinatorial
HHS structure for Z.

Remarkably, Z is a CAT(0) cube complex admitting a weak factor system, and & = b, is
the quotient of its hyperclosure by parallelism, which is also an orthogonal set by Theorem
10.13. This shows that the orthogonals for non-split property, which is the most obscure
among the properties of our main Theorem, is essential for the construction from Section
4 to work, even if we assume that orthogonality determines nesting.

Consider the two-dimensional cube complex Z obtained by gluing the three infinite com-
plexes in Figure 9 along the red and blue arrows, respecting the numerical labels.

Lemma 10.15. The complex Z is CAT(0).

Proof. This follows from various versions of the principle that gluing simply-connected, non-
positively-curved spaces along convex subspaces using isometries yields a simply-connected
non-positively-curved result. More precisely:

Combinatorial version: A cube complex is CAT(0) if and only if its 1-skeleton is a
median graph [Che00, Theorem 6.1]. Products of median graphs are median, and a graph
decomposing as the union of two median graphs intersecting along a subgraph that is convex
in each piece is median (see e.g. [Isb80, Che00]).

CAT(0) version: A complete geodesic metric space is CAT(0) if it is the union of two
CAT(0) spaces whose intersection is convex in each piece, and products of CAT(0) spaces
are CAT(0) [BH99, Theorem 11.1, Exercise 1.16.(2)].

The part of Z at left is obtained from two copies of [0, 2] x [0, ), glued along a point, by
gluing squares along a collection of edges. A similar observation applies to the two pieces
at right. Apply the gluing principle once more, using that the red/blue line is convex in
each piece where it appears. O

Next, let us check quickly that Z admits a factor system:
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Figure 9. The space Z is obtained by gluing the three pieces along the red and
blue arrows. The vertical edges are labelled by numbers, while the horizontal edges
are labelled by Greek capital letters. Notice that I'y is orthogonal to all edges with
positive odd labels, which form an infinite ray, and similarly I'y is orthogonal to all
edges with positive even labels. The yellow edges are representatives for the parallelism
classes of edges which are in the hyperclosure.

Lemma 10.16. Let b be the hyperclosure in Z. Then 6/~ is a weak factor system. More

strongly, b is a factor system in the sense of [BHS17b].
Finally, the HHS structure (Z, h/~) from Theorem 10.13 has the DPR property.

Proof. Suppose that [F1],...,[Fn] € 6/~ satisfy [F;] & [Fi+1] for all ¢, with each F; < Z.
For each i consider the parallelism class [F;'] of its abstract orthogonal, which, by Lemma
10.5, coincides with the parallelism class [FZ]L of the maximal subcomplex orthogonal to
F;. Since [F;] & [Fj41] we have that [F;]* = [F;_1]*; moreover the nesting is proper, since
by [HS20, Corollary 3.4] we have that [F;]*+ = [F}].

Now, if b /~ had arbitrarily large =-chains, then for any R > 0, we could choose n as above
so that for some m < n, the subcomplexes F},, and F,# both have at least R vertices (take
n much larger than R, and consider m = |n/2]).

Next observe that there is a uniform bound on the degrees of vertices in Z. Hence, for any
R; = 0, we can choose R and thus the F; so that F},, and Fé, chosen as above for the given
R, have diameter more than R;.

Thus Z contains a convex subcomplex isometric to F,, x F-, with each factor having
diameter at least R;. Now observe that the inclusion into Z of the union of the red and
blue rays is a quasi-isometry R — Z, so Z is hyperbolic. By taking R; sufficiently large in
terms of the hyperbolicity constant, we contradict, say, [Hagl4, Theorem 7.6] or [CDET08].
Now, Z is uniformly locally finite (i.e. the number of O—cubes in a ball is bounded in terms
of the radius of the ball only), and b is closed under taking intersections (since the projection
of A to Bis An B when A, B are convex subcomplexes with A n B # (), the bound on
the length of E—chains implies a bound on the number of elements of the hyperclosure that
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can contain a given O—cube, as required by the definition of a factor system in [BHS17b,
Sec. 8|.

Finally, the DPR follows from Remark 10.14 in this example, since each element of the
hyperclosure is uniformly coarsely covered by edges coloured yellow in Figure 9. O

Lemma 10.17. The minimal orthogonality graph of 6/~ 1s the graph shown in Figure 10.

Proof. Each edge labelled by an integer n > —1 in Figure 9 is a combinatorial hyperplane,
and hence its parallelism class [h] € b /~- The same is true of the edges I'y, I's.

Consider the edge A. The hyperplane parallel to —1 and the hyperplane parallel to 1 are
respectively parallel to combinatorial hyperplanes intersecting along an edge parallel to A,
so [A] € E/N, and [X] € f_)/N by an identical argument, with 0 replacing —1.

Recall that b excludes singletons, so any element of /~ represented by a subcomplex
consisting of a single edge is T—minimal; this holds in particular for [T'1], [T'2], [X], [A] and
[n], n = —1. The other parallelism classes of edges do not belong to h. Moreover, any
element of b contains a parallel copy of one of the above-named edges.

Therefore, the minimal orthogonality graph X has vertex set

{[Z], [A] [T1], [Ta]} v {[n]inz—1-

From the definition of orthogonality, vertices of X are adjacent if and only if the corre-
sponding edges of Z have parallel copies spanning a square, and thus X is as in Figure
10. O

-1 O/T%l\\\L%
\A%

2

Figure 10. The minimal orthogonality graph X.

10.2.1. Fuilure of the blow-up construction. Now recall how to construct the simplicial com-
plex X from X: for each T-minimal [F] € b /~, the corresponding vertex of X is blown up
to a cone over the vertex set of the coordinate space C[F'] from the HHS structure of Theo-
rem 10.12. From [BHS17b, Remark 13.2|, C[F] is the factored contact graph of the CAT(0)
cube complex F. In the present example, each such F' is an edge (one of A, X, T, i € {1, 2},
or n, n = —1), so C[F] is a single vertex. Hence X is obtained from X by blowing up
each vertex to an edge (the cone over a vertex); each edge of X therefore blows up to a
3-simplex.

We now argue that this X cannot support a combinatorial HHS structure for Z.
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Proposition 10.18. Suppose that W is any X —graph such that (X, W) is a combinatorial
HHS. Then W is bounded, and in particular cannot be quasi-isometric to Z.

Proof. For each vertex v of X, let © be the 1-simplex supported on v, and let v,Cv be
the two O-simplices supported on v. We use the same notation for a parallelism class of
subcomplexes in h as for the corresponding vertex of X. So, for instance, in X, [3] and

C[3] are O-simplices, and [ ] and {[3],C[I"1]} are 1-simplices.

If (X,W) is a CHHS with W unbounded, then by Theorem 2.12, the augmented links of
simplices in X must have arbitrarily large diameter. However, their diameters are uniformly
bounded, in terms of the constant ¢ from Definition 2.7, which exists by hypothesis. For
example:

o Lk X(@)+W = X*W has diameter bounded independently of &, by inspection.
e Let [ | be the edge of X projecting to the vertex [n] of X. For n > 1, the saturation
of [ ] consists of those [m] with m = n mod 2, and the link consists of £ U A U T

for one of the values of i. For n < 0, the link is & or A. In any case, Lkx ([n ])+W
connected, by Definition 2.7.(2), and there are only finitely many such graphs, each
of which has finitely many vertices, so these links are uniformly bounded.

~ — —~ =0
e Note that Lk (I'1) is the union of the edges [2k + 1], k£ = 0, and Sat(I';) = Fl( )

{[l'1].C[I"1]}. Moreover Yz = (X — Sat(ﬁ))*w is uniformly bounded, and so must
be Lk X(f‘;)JrW which is quasi-isometrically embedded in Yz by Definition 2.7.(2).
The same holds for fg.

Similar arguments give boundedness of the remaining links (some are bounded by construc-
tion, recall Corollary 4.4, while the links of almost maximal simplices are points). Hence, W
is bounded since it is a HHS whose coordinate spaces are all bounded (e.g. by the Distance
Formula 1.10). O

Remark 10.19 (What’s wrong with this example?). The HHS structure on Z has wedges,
clean containers and the dense product region property by Theorem 10.13 and Lemma 10.16.
Moreover, orthogonality determines nesting, i.e. [F] & [F'] if and only if [F']* = [F]*.

This illustrates that an HHS in which orthogonality determines nesting need not have the
orthogonals for non-split domains property. This is a typical phenomenon in CAT(0) cube
complexes. Indeed, if [F] € b, (in an arbitrary CAT(0) cube complex), then as long as [F]
is not the unique =—maximal element, [F ]L is defined and belongs to b /~- However, the
existence of orthogonals is not inherited by the sub-HHS structure on F', in general. More
precisely, we could consider the hyperclosure of the CAT(0) cube complex F, called hF'.
Since hyperplanes of F' are of the form F' n H, where H is a hyperplane of Z intersecting
F| by e.g. [CS11, Lem. 3.1|, and F n H = gr(H) by e.g. [BHS17b, Lem. 2.6, we see that
f)F naturally embeds in b (preserving parallelism), yielding a set of domains in b /~ nested
in [F]. However, the set of all [F'] € b, which are nested inside [F] is in general larger
than this, since it contains subcomplexes of the form gz (F”), where F” is an element of the
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hyperclosure not parallel to any subcomplex in the “intrinsic” hyperclosure of F. Hence,
given an element [F'] £ [F], its orthogonal inside [F'] might not exist.

Concretely, in our example, consider the case where F' is the hyperplane dual to the edge
A. Since F' is 1-dimensional, its hyperplanes are points and so its intrinsic hyperclosure is
empty. But in h,_, we have, say, [n] = [F] and [F'] = [F], where [F'] is the subcomplex
obtained by projecting to F' the hyperplane dual to I';. Again since F' is 1-dimensional,
these subcomplexes do not have non-trivial orthogonal complements that belong to the
hyperclosure but are nested in F. Hence (Z,b /N) fails to have orthogonals for non-split
domains.

Absent orthogonals and boundedness of W: Let us see how the failure of orthogonals
for non-split domains caused problems in the example. Recall that the simplex ﬁ had
bounded link because its saturation failed to contain, say, i, which then acted as a cone-
point in X — Sat(I';) over Lkx(T';). Consider the hyperplanes Hp, and Hy, in Z dual to
the edges I'y and ¥, and let F be the projection of the former onto the latter, so F € b
and F' is the ray consisting of the red edges in Figure 9. Then F' is non-split, since any
two C-minimal domains it contains (i.e. every two red edges) are transverse. Moreover
FC Hy, but F- =T, UX UA, so F is not orthogonal to anything properly nested in Hy.
Back in X, the role of C[F'] (which is a ray) should be played by the link of I'y, which is
contained in the link of &. So it seems reasonable that by adding the “missing” orthogonal
domain, one could add a vertex w to X in such a way that w » ¥ is defined and has the
same link as I';. This way, removing Sat(I';) would now remove X, which as we mentioned
is an obstruction to having an unbounded augmented link. Of course, one would also need
to deal with A similarly. But then, if Fl and Fg were made to have unbounded hnks a new
difficulty would arise, because Definition 2.7.(3) Would then demand that & and A have a
common nested simplex whose link contains those of F1 and F2 This would presumably be
addressed by adding a single w as above, joined to both ¥ and A and I'1, and corresponding
to an orthogonal complement of F' inside the wedge of Hy, and HA.

Remark 10.20 (Connection to lattice theory). Let (&,=, L) be an orthogonal set and let
& be a symbol distinct from all elements of &. Then the operation A which, by Definition
7.10, was partially defined on &, extends to a binary operation on & L {(Z} if one sets
UNB=FAU=UforUeSGu{d},and UAV = if U,V € & do not have any
common nested elements of &. We extend E so that ¢ is the unique E—minimal element.
Assuming that the complexity is finite, we also have a join operation: U v V is the unique
E-minimal W such that U,V = W that this is well-defined is an easy exercise using wedges
and finite complexity. In fact, the poset (& u {J}, =), equipped with the operations A
and v, is a complete lattice, as in e.g. |BS81, Definition 4.1], where completeness also
follows from finite complexity. Moreover, the clean container assumption, together with
Lemma 7.11, gives an involution * : & — {S} — & — {S}, where S is the unique =-maximal
element, and we extend this to & U {JJ} by declaring St = @ and @+ = S.! This makes

lon @, the orthogonality relation ULV is still equivalent to U = V*, i.e. U A V' = U. However, C
and L are not mutually exclusive on & u {J}, but the only failure is & = S and LS.
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S u {}, with the lattice relations A, v and the orthogonal complementation operator L

an ortholattice, defined in e.g. [Ste99, Sec. 1.2].

Strong orthogonality (Property 7.1) then becomes: for all U,V € & such that U & V,
we have that UL A V # . Another formulation is: for any V € &, the order ideal
{U e &:U c V} is again an orthogonal set, with the involution Uix = U+ A V.

Now, if U = V., then (UL AV)v U V. If for some W & V we have U & W and
UL AV © W, then strong orthogonality provides A := WAV # . But then (UL AV) LA,
since ALW, while on the other hand Wt AV = A = UL AV since U = W. This is a
contradiction. We have showed that strong orthogonality implies the identity (U+ A V) v
U = V. Ortholattices satisfying this identity have a name: they are orthomodular [Ste99].
From the point of view of HHS structures, factor systems in CAT(0) cube complexes provide
the main motivating examples of orthogonal sets, and we saw earlier that orthomodularity
fails in general; in fact, one can already see this failure in HHS structures on, say, right-
angled Artin groups (see [BHS17b, Sec. 8]). This raises the following:

Question 10.21. Let (£, A, v, -, &, S) be an ortholattice such that E-chains in £ have
length at most N < 00, where U = V means U A V = U. Write ULV to mean U = V*.

e Does there exist an orthomodular ortholattice £; and an injective map £ — £;
that preserves the relations = and 1, as well as the negations of those relations?
Under what conditions can £1 be chosen so that chains in £; also have length at
most N7

e If a group G acts on £ cofinitely, preserving the relations =, |, &£, £, when can £;
be chosen as above so that the G-action extends to £; and |g\*!| < c0?

The goal would be to begin with an HHS/G whose index set is an orthogonal set (e.g. a
compact special group) and produce a new HHS /G structure to which Theorem 8.3 applies.
Answers to the above questions are not quite sufficient but appear necessary, and also of
independent interest. We suspect that a sufficient condition for constructing £1 will involve
the existence of an order-preserving, | —preserving map from £ to a finite boolean lattice.
It is also possible that this sort of construction is known to lattice theorists, in which case
we would be grateful for a reference.
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