NON-COLOURABLE HIERARCHICALLY HYPERBOLIC GROUPS

MARK HAGEN

Abstract

We exhibit a hierarchically hyperbolic group for which no hierarchically hyperbolic structure is colourable, answering an (implicit) question of Durham-Minsky-Sisto.

Introduction

An important feature of the mapping class group $M C G(S)$ of a finite-type surface S, observed by Bestvina-Bromberg-Fujiwara BBF15, is the existence of a finite colouring of the subsurfaces of S such that subsurfaces of the same colour overlap. Together with similar statements about compact special groups (see HW08] and BHS17, Section 11]), this suggests a useful property of some hierarchically hyperbolic groups (HHGs), which include the aforementioned examples.

This property is colourability, formalised in [DMS20, HP22]. One purpose of colourability is to connect the hierarchically hyperbolic geometry to the projection systems introduced in BBF15. In [HP22, Pet21, this is used to produce quasi-isometries from various hierarchically hyperbolic groups to CAT(0) cube complexes. In [DMS20], it is used to apply cubical geometry to hierarchically hyperbolic groups, for example to prove semihyperbolicity of the mapping class group. Colourability of HHGs is also used in the forthcoming paper [CRHK22] on asymptotic cones of HHG. In [DMS20, HP22], the authors (implicitly) ask for an example of a non-colourable HHG. The purpose of this note is to describe one.

We recall the definition of colourability given in [DMS20]; the definition in [HP22] is the same, up to passing to finite-index subgroups. We first recall that a hierarchically hyperbolic group (G, \mathfrak{S}) is a finitely generated group G and a set \mathfrak{S} with three mutually exclusive relations (nesting, orthogonality, and transversality, denoted $\subseteq, \perp, \pitchfork$) such that G acts cofinitely on \mathfrak{S}, preserving the relations. Each $U \in \mathfrak{S}$ is associated to a hyperbolic space $\mathcal{C} U$ and a coarsely lipschitz coarse map $\pi_{U}: G \rightarrow \mathcal{C} U$. This setup must satisfy some geometric axioms; see BHS19, Definition 1.1]. There are equivariance conditions not needed for the definition of colourability, which we postpone. The preceding data is an $H H G$ structure for G.

Definition. An HHG (G, \mathfrak{S}) is colourable if there is a finite partition $\mathfrak{S}=\bigsqcup_{i=1}^{\chi} \mathfrak{S}_{i}$ such that:

- for all $i \leqslant \chi$ and all $U, V \in \mathfrak{S}_{i}$, we have $U \pitchfork V$;
- the action of G on \mathfrak{S} induces an action by permutations on the set $\left\{\mathfrak{S}_{i}\right\}_{i=1}^{\chi}$ of colours.

A group G may admit distinct HHG structures, some colourable and some not.
Acknowledgments. I thank Alessandro Sisto for asking me the question; Harry Petyt for listening to a description of the example, offering useful comments, and asking about 2-dimensional examples; and Jason Behrstock for comments on the text. I am grateful to Sam Shepherd for showing me some examples of cube complexes which led me to to choose the lattice Λ and the element λ more carefully than was done in an earlier draft of this paper. I finally thank the referee for several very helpful comments.

[^0]
1. The EXAMPLE

We will construct a group G as an amalgam

$$
G=\Lambda_{\langle\lambda\rangle=\langle t\rangle}^{*} T,
$$

of a non-residually finite cubical group Λ and a 3-dimensional crystallographic group T. We will choose t so that, in any hierarchically hyperbolic structure on G, t takes some domain to an orthogonal domain. We will choose λ so that any finite-index subgroup of G contains $t=\lambda$. There is also some care required in choosing λ so that G is actually an HHG. This section involves CAT(0) cube complexes - we refer to BHS17, HS20 for background.
1.1. The group Λ and the element λ. We start with a basic fact phrased in cubical terms:

Lemma 1.1. Let C be a proper $C A T(0)$ cube complex on which the group Γ acts geometrically. Let $\gamma \in \Gamma$ have a combinatorial axis α_{0} and suppose that the cubical convex hull α of α_{0} is contained in a neighbourhood of α_{0}. Let $\pi_{\alpha}: C \rightarrow \alpha$ be the gate map (see e.g. Hag22, Section 2.2]). Then for all $h \in \Gamma$, either $\pi_{\alpha}: h \cdot \alpha \rightarrow \alpha$ is a cubical isomorphism, or $\operatorname{diam}\left(\pi_{\alpha}(h \cdot \alpha)\right)<\infty$.

Proof. Since $\langle\gamma\rangle$ acts cocompactly on α_{0} and α is $\langle\gamma\rangle$-invariant and contained in a neighbourhood of α_{0}, the action of $\langle\gamma\rangle$ on α is cocompact. Since the Γ-action is geometric, each translate $g \alpha$ has bounded Hausdorff distance from the image of $g\langle\gamma\rangle$ under a fixed orbit map, and hence any ball in C intersects finitely many translates of α.

Let $R=\mathrm{d}_{C}(\alpha, h \alpha)$, so that $\mathrm{d}_{C}(\alpha, g h \alpha)=R$ for all $g \in\langle\gamma\rangle$. For any $x \in \alpha$ and $s \geqslant 0$, if $g \pi_{\alpha}(h \alpha) \cap B_{s}^{\alpha}(x) \neq \varnothing$, then $g h \alpha \cap B_{R+s}^{C}(x) \neq \varnothing$. The number of such $g h \alpha$ is finite. Hence the $\langle\gamma\rangle$-translates of $\pi_{\alpha}(h \alpha)$ form a locally finite family in α. So by e.g. [HS20, Lemma 2.3], the action of $\operatorname{Stab}_{\langle\gamma\rangle}\left(\pi_{\alpha}(h \alpha)\right.$) (which is virtually $\left.\langle\gamma\rangle \cap\langle\gamma\rangle^{h}\right)$ on $\pi_{\alpha}(h \alpha)$ is cocompact. So, if $\langle\gamma\rangle \cap h\langle\gamma\rangle h^{-1}=\{1\}$, then $\pi_{\alpha}(h \cdot \alpha)$ is compact. Otherwise, there exists $n \neq 0$ such that $h \gamma^{n} h^{-1}=\gamma^{ \pm n}$, whence $\pi_{\alpha}(h \cdot \alpha)=\alpha$ since γ^{n} skewers the same hyperplanes as γ.

Corollary 1.2. Let T_{1}, T_{2} be locally finite trees and let $\Gamma \leqslant \operatorname{Aut}\left(T_{1}\right) \times \operatorname{Aut}\left(T_{2}\right)$ act geometrically on $T_{1} \times T_{2}$. Let $\gamma \in \Gamma$ fix $v \in T_{2}$ and act hyperbolically on $T_{1} \times\{v\}$, with axis α. Let $\bar{\alpha}$ be the image of α under the natural projection to T_{1}. Then for all $h \in \Gamma$, either $h \bar{\alpha}=\bar{\alpha}$, or $h \bar{\alpha} \cap \bar{\alpha}$ has finite diameter (including the possibility that it is empty).

Proof. Since α is a geodesic in $T_{1} \times\{v\}$, we have that α is convex in $T_{1} \times T_{2}$. Fix $h \in \Gamma$. By Lemma 1.1, either $h \alpha$ and α cross exactly the same hyperplanes, or they cross finitely many common hyperplanes, since the hyperplanes crossing $\pi_{\alpha}(h \alpha)$ are exactly those crossing both α and $h \alpha$ by e.g. [Hag22, Lemma 2.5]. Since α and $h \alpha$ have trivial projections to T_{2}, the hyperplanes crossing α (resp. $h \alpha$) are the preimages under natural projection to T_{1} of midpoints of edges in $\bar{\alpha}$ (resp. $h \bar{\alpha}$), so the edges of $\bar{\alpha} \cap h \bar{\alpha}$ are in bijection with the hyperplanes crossing both α and $h \alpha$, and we are done.

Now we discuss irreducible lattices in products of trees, following the discussion from Cap19, Section 4]. We begin with a (finite) BMW presentation of a torsion-free BMW group:

$$
\Gamma=\langle A \cup \mathcal{S} \mid R\rangle
$$

so that the associated Cayley graph is the 1 -skeleton of a product $T_{A} \times T_{\mathcal{S}}$ of trees, where the edges in each $T_{A} \times\{x\}$ are labelled with the elements of A, and likewise for $T_{\mathcal{S}}$ and \mathcal{S}. So, $C=T_{A} \times T_{\mathcal{S}}$ is a proper $\mathrm{CAT}(0)$ square complex, and the action of Γ by left multiplication gives an inclusion $\Gamma \rightarrow \operatorname{Aut}\left(T_{A}\right) \times \operatorname{Aut}\left(T_{\mathcal{S}}\right)$, which we assume is irreducible.

The element $\gamma \in \Gamma-\{1\}$ is A-convex if there is a vertex $v \in T_{\mathcal{S}}$ fixed by the image of γ in $\operatorname{Aut}\left(T_{\mathcal{S}}\right)$. Hence γ has a combinatorial axis $\alpha \subset T_{A} \times\{v\}$ where the natural projection $C \rightarrow T_{A}$ sends α isometrically to the axis $\bar{\alpha}$ for γ in T_{A}. (We conflate α and $\bar{\alpha}$ with their images.)

Corollary 1.2 says that for all $h \in \Gamma$, either $h \bar{\alpha}=\bar{\alpha}$ or $\operatorname{diam}(h \bar{\alpha} \cap \bar{\alpha}) \leqslant N(h)$ for some $N(h) \in \mathbb{N}$ (with $N(h)=0$ if $\bar{\alpha} \cap h \bar{\alpha}=\varnothing$). If there exists $N<\infty$ such that $N(h) \leqslant N$ whenever $h \in \Gamma$ satisfies $h \bar{\alpha} \neq \bar{\alpha}$, then the A-convex element γ is N-controlled. (There can be convex elements γ that are not N-controlled for any N; see [Wis07, Section 5] or [She22] or Remark 3.5)

Following Wis07, we construct a new irreducible lattice. Let \bar{A} be a copy of A and let $a \mapsto \bar{a}$ be a bijection $A \rightarrow \bar{A}$. Let \bar{R} be obtained from R by, in each relation, replacing each $a \in A$ by \bar{a} wherever it occurs (and keeping the elements of \mathcal{S}). Let

$$
\Lambda=\langle A \sqcup \bar{A} \sqcup \mathcal{S} \mid R \sqcup \bar{R}\rangle \cong \Gamma_{\langle\mathcal{S}\rangle}^{*} \Gamma,
$$

which is an irreducible lattice in $\operatorname{Aut}\left(T_{A \cup \bar{A}}\right) \times \operatorname{Aut}\left(T_{\mathcal{S}}\right)$. Let $\widetilde{X}_{\Lambda}=T_{A \cup \bar{A}} \times T_{\mathcal{S}}$ (whose 1-skeleton we identify with the Cayley graph of the above BMW presentation of Λ).
Lemma 1.3. There exists $\lambda \in \Lambda-\{1\}$ such that all of the following hold:

- λ is $A \cup \bar{A}$-convex,
- there is a finite-index subgroup $P \leqslant\langle\mathcal{S}\rangle$ centralising λ,
- λ is N-controlled for some $N \in \mathbb{N}$, and
- every finite-index subgroup of Λ contains λ.

Proof. We imitate the discussion after Proposition 4.17 in [Cap19. Define a homomorphism $f: \Lambda \rightarrow \Gamma$ by $f(x)=x$ for $x \in \mathcal{S}$ and $f(a)=a$ for $a \in A$ and $f(\bar{a})=a$ for $\bar{a} \in \bar{A}$.

Let $g \in\langle A \cup \bar{A}\rangle-\{1\}$ be an $A \cup \bar{A}$-convex element fixing the image $1_{\mathcal{S}} \in T_{\mathcal{S}}$ of $1 \in \tilde{X}_{\Lambda}$ under the natural projection $\widetilde{X}_{\Lambda} \rightarrow T_{\mathcal{S}}$. Let $\alpha \subset T_{A \cup \bar{A}} \times\left\{1_{\mathcal{S}}\right\}$ be the axis of g and let $\bar{\alpha}$ be the axis of g in $T_{A \cup \bar{A}}$. Let τ be the translation length of g (which is the same on $T_{A \cup \bar{A}} \times T_{\mathcal{S}}$ as on $T_{A \cup \bar{A}}$, by $A \cup A$-convexity of g). By conjugating, we can assume $1_{A \cup \bar{A}} \in \bar{\alpha}$.

Consider the finitely many vertices $v_{1}, \ldots, v_{k} \in T_{A \cup \bar{A}}$ at distance at most 2τ from $1_{A \cup \bar{A}}$. For each i, let $y_{i} \in \Lambda$ be such that $y_{i} \cdot 1_{A \cup \bar{A}}=v_{i}$. We take $v_{1}=1_{A \cup \bar{A}}$ and $y_{1}=1$. From the definition of τ, up to relabelling, we can take $v_{k}=g \cdot 1_{A \cup \bar{A}}$ and $y_{k}=g$. These choices are not unique, but there are finitely many y_{i}, and they depend on g but not on the elements h discussed below.

Let

$$
P=\bigcap_{i=1}^{k} y_{i}\langle\mathcal{S}\rangle y_{i}^{-1} .
$$

Note that $[\langle\mathcal{S}\rangle: P]<\infty$: the subgroup $\langle\mathcal{S}\rangle$ is commensurated in Λ since the trees $\left\{v_{i}\right\} \times T_{\mathcal{S}}$ are all parallel in \widetilde{X}_{Λ}. Let $x_{1}, \ldots, x_{r} \in\langle\mathcal{S}\rangle$ be left coset representatives for P in $\langle\mathcal{S}\rangle$.

Suppose additionally that $g \in \operatorname{ker} f$. Then for any $p \in P$, we have $p \in\langle\mathcal{S}\rangle^{g} \cap\langle\mathcal{S}\rangle$, so $g^{-1} p g=p^{\prime} \in\langle\mathcal{S}\rangle$. Since $f(g)=1$ and f is the identity on $\langle\mathcal{S}\rangle$, we get

$$
p^{\prime}=f\left(p^{\prime}\right)=f\left(g^{-1} p g\right)=f(p)=p,
$$

i.e. g commutes with every element of P.

Let $h \in \Lambda$ be such that $h \bar{\alpha} \cap \bar{\alpha} \neq \varnothing$ but $h \bar{\alpha} \neq \bar{\alpha}$. For some $n \in \mathbb{Z}$, we have $\mathrm{d}_{T_{A \cup \bar{A}}}\left(\bar{\alpha}, h g^{n} h^{-1}\right.$. $\left.\left(h 1_{A \cup \bar{A}}\right)\right) \leqslant \tau$. Since $\bar{\alpha} \cap h \bar{\alpha}=\bar{\alpha} \cap\left(h g^{n} h^{-1}\right) h \bar{\alpha}$, and our goal is to bound $\operatorname{diam}(h \bar{\alpha} \cap \bar{\alpha})$, we assume $n=0$. (More precisely, let $h_{1}=h g^{n}$. Then $h_{1} \bar{\alpha}=h \bar{\alpha}$, and $\mathrm{d}_{T_{A \cup \bar{A}}}\left(\bar{\alpha}, h_{1} \cdot 1_{A \cup \bar{A}}\right) \leqslant \tau$, and we redefine h to be h_{1}.) Translating by an appropriate power of g, using $N\left(g^{m} h\right)=N(h)$ for all m, we can thus assume $\mathrm{d}_{T_{A \cup \bar{A}}}\left(1_{A \cup \bar{A}}, h \cdot 1_{A \cup \bar{A}}\right) \leqslant 2 \tau$.

Hence there exists $i \leqslant k$ such that $h \cdot 1_{A \cup \bar{A}}=v_{i}$, whence $h \in y_{i}\langle\mathcal{S}\rangle$. So, $h=y_{i} x_{j} p$ for some $j \leqslant r$ and $p \in P$. But $h \bar{\alpha}$ is the axis of $h g h^{-1}=y_{i} x_{j} \operatorname{pgp}^{-1} x_{j}^{-1} y_{i}^{-1}=y_{i} x_{j} g x_{j}^{-1} y_{i}^{-1}$, so $h \bar{\alpha}=y_{i} x_{j} \bar{\alpha}$. Let $N=\max _{i^{\prime}, j^{\prime}} N\left(y_{i^{\prime}} x_{j^{\prime}}\right)$, where $y_{i^{\prime}}, x_{j^{\prime}}$ range over the values for which $y_{i^{\prime}} x_{j^{\prime}} \bar{\alpha} \neq \bar{\alpha}$. Then $N<\infty$, and N depends on g, τ, and our choice of $y_{i^{\prime}}$ and coset representatives $x_{j^{\prime}}$, but not on h. So for any h for which $h \bar{\alpha} \neq \bar{\alpha}$, we have shown $N(h) \leqslant N$, i.e. g is $N-$ controlled. Finally, Wise found (see [Cap19, Proposition 4.15]) distinct $a, b \in A$ such that
$\lambda=a b^{-1} \bar{b} \bar{a}^{-1}$ lies in every finite-index subgroup of Λ. Noting that this λ is $(A \cup \bar{A})$-convex and $f(\lambda)=1$ completes the proof.

Let $X_{\Lambda}=\Lambda \backslash\left(T_{A \cup \bar{A}} \times T_{\mathcal{S}}\right)$, which is a compact nonpositively-curved square complex with one vertex. The element $\lambda \in \Lambda \cong \pi_{1} X_{\Lambda}$ from Lemma 1.3, which lies in every finite-index subgroup of Λ, is represented by a locally convex closed immersed edge-path $\check{\alpha}$ in X_{Λ}. Letting $\alpha \rightarrow T_{A \cup \bar{A}} \times T_{\mathcal{S}}$ be any elevation of $\check{\alpha}$, we have that α is a convex (based) line (lying in a parallel copy of $T_{A \cup \bar{A}} \times\left\{1_{\mathcal{S}}\right\}$), and for any two such lifts $\alpha, h \alpha$, either $h \bar{\alpha}=\bar{\alpha}$ (and $h \alpha, \alpha$ are parallel) or $\operatorname{diam}\left(\pi_{\alpha}(h \alpha)\right) \leqslant N$.

1.2. The crystallographic group T. Let

$$
T=\left\langle x, y, t \mid x y x^{-1} y^{-1}, t x t^{-1}=y, t y t^{-1}=x^{-1}\right\rangle .
$$

The group T is isomorphic to a uniform lattice in $\operatorname{Isom}\left(\mathbb{R}^{3}\right)$, where x, y act as unit translations along two orthogonal axes, and t is a screw-motion rotating the $x y$-plane by $\pi / 2$ and translating distance 1 along its screw-axis. Tile \mathbb{R}^{3} by 3 -cubes so that the translation axes for x, y, and the screw-axis for t, are combinatorial lines. So, T acts freely and cocompactly on the resulting CAT(0) cube complex, and the quotient X_{T} is a nonpositively-curved cube complex. The 2 -skeleton of X_{T} is the presentation complex of the above presentation, and the 3 -cube is attached in the usual way. Let $X_{T}(n)$ be the cubical subdivision of X_{T} in which each hyperplane is replaced by n parallel copies (see e.g. [Hag07, Definition 2.3]), so that $t \in T \cong \pi_{1} X_{T}(n)$ is represented by an embedded (oriented) combinatorial loop β of length n which is locally convex.
1.3. The group G and its cubical structure. Form a cube complex X by attaching X_{Λ} to $X_{T}(|\check{\alpha}|)$ by identifying $\check{\alpha}$ and β (preserving orientations). Then X is nonpositively-curved since it was formed by gluing nonpositively-curved cube complexes along a common locally convex immersed subcomplex. Let $G=\pi_{1} X$, so that G admits a presentation

$$
G \cong\left\langle\Lambda, x, y, t \mid x y x^{-1} y^{-1}, t x t^{-1} y^{-1}, t y t^{-1} x, \lambda t^{-1}\right\rangle
$$

The universal cover \tilde{X} of X is a $\operatorname{CAT}(0)$ cube complex on which G acts freely and cocompactly. Let $\widetilde{X}_{T}(|\check{\alpha}|)$ be the image of a fixed lift of the map $\widetilde{X}_{T}(|\check{\alpha}|) \rightarrow X_{T}(|\check{\alpha}|) \rightarrow X$, so that $\widetilde{X}_{T}(|\check{\alpha}|)$ is a convex subcomplex isomorphic to the standard tiling of \mathbb{E}^{3} by 3 -cubes, with stabilizer T. Likewise, we have a convex subcomplex \widetilde{X}_{Λ}, isomorphic to a product of two trees, stabilised by Λ. Abusing language slightly, we call translates of α edge spaces and translates of $\widetilde{X}_{T}(\mid \stackrel{\alpha}{\alpha}), \widetilde{X}_{\Lambda}$ vertex spaces.
Lemma 1.4. Let $G^{\prime} \leqslant G$ be a finite-index subgroup. Then $t \in G^{\prime}$.
Proof. We have $\left[\Lambda: \Lambda \cap G^{\prime}\right] \leqslant\left[G: G^{\prime}\right]<\infty$, so $\lambda \in \Lambda \cap G^{\prime}$. Since $\lambda=t$ in G, we have $t \in G^{\prime}$.
Lemma 1.5. Let $k \geqslant 0$ and let $q: \mathbb{Z}^{k} \rightarrow \tilde{X}^{(0)}$ be a quasi-isometric embedding. Then $k \leqslant 3$.
Proof. There are various ways to see this. For instance, since \tilde{X} is a 3 -dimensional CAT(0) cube complex, its 0 -skeleton (with the graph metric) is a coarse median space of rank 3 (see e.g.[Bow19, Section 4]), so this follows from [Bow18, Lemma 6.10].
1.4. G is an HHG. Here is the full list of equivariance properties from the definition of a hierarchically hyperbolic group (Γ, \mathfrak{S}). We saw that Γ must act on \mathfrak{S} cofinitely, preserving $\sqsubseteq, \perp, \pitchfork$. For each $g, h \in \Gamma$ and $U, V \in \mathfrak{S}$, we also require:

- There is an isometry $g: \mathcal{C} U \rightarrow \mathcal{C} g U$, and the composition $\mathcal{C} U \xrightarrow{h} \mathcal{C} h U \xrightarrow{g} \mathcal{C} g h U$ is $g h$.
- $\pi_{g U}(g h)=g \pi_{U}(h)$.
- If $U \pitchfork V$ or $U \subsetneq V$ and $\rho_{V}^{U} \subset \mathcal{C} V$ is as in [BHS19, Definition 1.1], then $g \rho_{V}^{U}=\rho_{g V}^{g U}$.

This definition follows [PS20] and is simpler than the coarse version in [BHS19]. The coarse version implies the above one [DHS20, Section 2]. The goal of this section is to prove:
Proposition 1.6. The group G is a hierarchically hyperbolic group.
We give two proofs, one using the combination theorem from [BR20] and one using cubes.
Proof using the Berlai-Robbio combination theorem. We first describe an HHS structure on $T_{A \cup \bar{A}}$. Let $\mathfrak{S}_{1}=\{g \bar{\alpha}: g \in \Lambda\} \sqcup\left\{S_{1}\right\}$, where S_{1} is just a symbol; we declare distinct translates of $\bar{\alpha}$ to be transverse, and declare them to be nested in S_{1}. Since λ is N-controlled, BHS19, Theorem 9.3] implies that $\left(T_{A \cup \bar{A}}, \mathfrak{S}_{1}\right)$ is an HHS, where $\mathcal{C} g \bar{\alpha}=g \bar{\alpha} \cong \mathbb{R}$, and $\mathcal{C} S_{1}$ is the quasi-tree obtained from $T_{A \cup \bar{A}}$ by coning off the subspaces $g \bar{\alpha}$. (The same conclusion also follows from [Spr17, Theorem 4.6], where the N-controlled property is used to verify [Spr17, Definition 4.2.2].)

We equip $T_{\mathcal{S}}$ with the trivial HHS structure $\left(T_{\mathcal{S}}, \mathfrak{S}_{2}\right)$ where $\mathfrak{S}_{2}=\left\{S_{2}\right\}$ and $\mathcal{C} S_{2}=T_{\mathcal{S}}$. Finally, let $\mathfrak{S}_{3}=\mathfrak{S}_{1} \sqcup \mathfrak{S}_{2} \sqcup\left\{S_{3}\right\}$. We declare everything in \mathfrak{S}_{1} orthogonal to everything in \mathfrak{S}_{2}, and everything is nested in S_{3}. The space $\mathcal{C} S_{3}$ is a point. By [BHS19, Proposition 8.27], ($\left.\tilde{X}_{\Lambda}, \mathfrak{S}_{3}\right)$ is an HHS, and it is readily checked that the actions of Λ on $T_{A \cup \bar{A}}$ and $T_{\mathcal{S}}$ induce an action on \mathfrak{S}_{3} (with four orbits) and the isometries between hyperbolic spaces required to make it an HHG structure $\left(\Lambda, \mathfrak{S}_{3}\right)$. It is readily verified that this has the intersection property from [BR20] and the clean containers property from [ABD21].

The action of T on $\widetilde{X}_{T}(|\check{\alpha}|)$ yields a hierarchically hyperbolic structure via BHS17, Remark 13.2], which has clean containers by [HS20, Theorem C], while the intersection property can be deduced directly from Definition 8.1 and Remark 13.2 of BHS17. The t-axis is a codimension2 combinatorial hyperplane, so its parallelism class is in the index set of this HHG structure. Moreover, by discarding some elements of the factor system that are single points, we can assume that the t-axis is \sqsubseteq-minimal. The associated hyperbolic space is a copy of \mathbb{R}, on which t acts as a length- $|\check{\alpha}|$ translation.

Equip the edge-groups (conjugates in G of $\langle t\rangle=\langle\lambda\rangle$) with the trivial HHG structure: the underlying hyperbolic space is a line mapping isometrically to $\bar{\alpha}$ on the Λ side, and to the t-axis on the T side. This verifies the full hieromorphism hypothesis from [BR20, Corollary B] and the coarse lipschitz requirement from that hypothesis. The quasiconvex hypothesis of [BR20, Corollary B] holds since the t-axis is convex in $\widetilde{X}_{T}(|\check{\alpha}|)$ while α is hierarchically quasiconvex in $\left(\Lambda, \mathfrak{S}_{3}\right)$ (see BHS19, Definition 5.1]) by construction (using that λ fixes a point in $T_{\mathcal{S}}$). The comparison maps hypothesis holds since comparison maps are isomorphisms of combinatorial lines. So [BR20, Corollary B] - the combination theorem - yields an HHG structure.
Remark 1.7. The proof fails as follows if λ is not N-controlled. The combination theorem [BR20, Corollary B] requires that the vertex group HHG structures contain the edge group HHG structures, which forced us to include $\bar{\alpha}$ and its translates in \mathfrak{S}_{3}. But if $\bar{\alpha}$ has arbitrarily large intersections with its translates, it cannot participate in an HHS structure on $T_{A \cup \bar{A}}$; either the consistency or complexity axiom from [BHS19, Definition 1.1] would be violated.

Proof using the cubical structure. We check that the CAT(0) cube complex \tilde{X} has a factor system, in the sense of [BHS17, Definition 8.1], so that the existence of an HHG structure follows from BHS17, Remark 13.2] or HS20, Theorem A]. Let \mathfrak{F} denote the smallest collection of convex subcomplexes of \widetilde{X} containing \tilde{X}, containing every combinatorial hyperplane and subcomplex parallel to a combinatorial hyperplane, and having the property that if $F, F^{\prime} \in \mathfrak{F}$, then the image of F^{\prime} under the gate map to F is also in \mathfrak{F}. To check that \mathfrak{F} is a factor system, it suffices to produce $\chi<\infty$ such that any vertex of \widetilde{X} lies in at most χ elements of \mathfrak{F}.
Claim 1. For each $h \subset \tilde{X}$ a combinatorial hyperplane, either $\pi_{\alpha}(h)=\alpha$, or $\operatorname{diam}\left(\pi_{\alpha}(h)\right) \leqslant N$. Proof of Claim 1. By definition, h is a component of the boundary of the carrier of some hyperplane \hat{h}. If \hat{h} crosses α, then $\pi_{\alpha}(h)$ is a single point, so suppose that \hat{h} does not cross α.

If \hat{h} crosses a vertex space containing α, then, because of the product structures of the vertex spaces, α is parallel to a subcomplex of h, so $\pi_{\alpha}(h)=\alpha$, or $\pi_{\alpha}(h)$ is a point. Otherwise, there is a sequence $g_{1} \alpha, g_{2} \alpha, \cdots, g_{k} \alpha$ of edge spaces separating α from h, and $\pi_{\alpha}(h)=\pi_{\alpha}\left(\pi_{g_{1} \alpha}(h)\right)$. By induction on $k, \pi_{g_{1} \alpha}(h)$ is either the whole of $g_{1} \alpha$, or has diameter at most N. Projecting to α doesn't increase distances, and the projection of $g_{1} \alpha$ to α is either α or has diameter at most N since λ is N-controlled, so the claim follows.
Claim 2. There is a finite $\mathfrak{F}_{0} \subset \mathfrak{F}$ such that the following holds. Let $h_{1}, \ldots, h_{n} \subset \widetilde{X}$ be combinatorial hyperplanes, let $\pi_{h_{i}}$ be the gate map to h_{i}, and let $F=\pi_{h_{1}}\left(\pi_{h_{2}}\left(\cdots \pi_{h_{n-1}}\left(h_{n}\right) \cdots\right)\right)$. Then $F \in G \cdot \mathfrak{F}_{0}$.
Proof of Claim 2. We consider three cases.
Case 0: Suppose ${\underset{\tilde{X}}{\tilde{X}}}\left(h_{i}, h_{j}\right) \leqslant 10 N$ for all i, j. Since the convex hull of the $10 N$-neighbourhood of h_{i} is contained in the $10 N \operatorname{dim} \tilde{X}$-neighbourhood of h_{i} (by e.g. [HP22, Lemma 4.2]), the Helly property for convex subcomplexes ($\overline{\text { Rol16 }}$, Theorem 2.2]) says the h_{i} all intersect some $10 N \operatorname{dim} \widetilde{X}$-ball B about a vertex. There are finitely many G-orbits of such balls, each intersecting finitely many hyperplanes. So up to the G-action, there are finitely many possibilities for the collection $\left\{h_{1}, \ldots, h_{n}\right\}$ and thus a finite collection $\mathfrak{F}_{0}^{\prime}$ of subcomplexes with $F \in G \cdot \mathfrak{F}_{0}^{\prime}$.

So, for the rest of the proof, we assume that there exist $I, J \leqslant n$ such that $\mathrm{d}_{\tilde{X}}\left(h_{I}, h_{J}\right)>10 N$.
Case I: Suppose that any two of the h_{i} intersect a common vertex space. By applying the Helly property to the Bass-Serre tree of the splitting of G and the subtrees determined by the various h_{i}, we get a vertex space \widetilde{Y} such that each $h_{i} \cap \widetilde{Y} \neq \varnothing$.

Subcase: no common translates of α : Suppose some h_{i}, h_{j} do not cross a common translate of α in \widetilde{Y}. Then any hyperplane crossing h_{i} and h_{j} crosses $h_{i} \cap \widetilde{Y}$ and $h_{j} \cap \tilde{Y}$. So F arises by projecting the hyperplanes $h_{s} \cap \tilde{Y}, 1 \leqslant s \leqslant n$ of \tilde{Y} onto one another, i.e. it lies in the factor system on \tilde{Y} (which exists since \tilde{Y} is the product of two locally finite trees or a copy of the standard cubulation of \mathbb{R}^{3}). There are finitely many orbits of such F.

So we now assume the h_{i} are disjoint (otherwise two cross in \widetilde{Y}, and so at least one cannot cross any translate of α), and any two cross some common translate of α in \widetilde{Y}.

A translate of α crossing all h_{i} : Suppose h_{I}, h_{J} both cross $g \alpha \subset \tilde{Y}$. Suppose that some h_{i} does not cross $g \alpha$. Inside \widetilde{Y}, choose $h \alpha$ crossing h_{i}, h_{I} and $h^{\prime} \alpha$ crossing h_{i}, h_{J}. Let p_{i}, p_{I}, p_{J} be the projections of h_{i}, h_{I}, h_{J} to $T_{A \cup \bar{A}}$ (which are necessarily points). The part of $g \bar{\alpha}$ between p_{I}, p_{J} has length at least $10 N$. For each pair of distinct axes in $h \bar{\alpha}, h^{\prime} \bar{\alpha}, g \bar{\alpha}$, the (nonempty) intersection has length at most N. This is impossible unless $h \bar{\alpha}=g \bar{\alpha}$ or $h^{\prime} \bar{\alpha}=g \bar{\alpha}$, whence $p_{i} \in g \bar{\alpha}$, i.e. h_{i} crosses $g \alpha$.

Common translate case: So, by translating, $\alpha \subset \widetilde{Y}$ and $h_{i} \cap \alpha \neq \varnothing$ for all $i \leqslant n$. We claim

$$
\mathcal{W}(F)=\bigcap_{w \in \mathcal{W}(\alpha)} \mathcal{W}(w)
$$

where, for a subcomplex or hyperplane $z, \mathcal{W}(z)$ means the set of hyperplanes in \tilde{X} crossing z.
Each h_{i} is a component of the boundary of the carrier of a hyperplane $\hat{h}_{i} \in \mathcal{W}(\alpha)$, so by the definition of F, we have $\mathcal{W}(F)=\bigcap_{i=1}^{n} \mathcal{W}\left(\hat{h}_{i}\right) \supseteq \bigcap_{w \in \mathcal{W}(\alpha)} \mathcal{W}(w)$. Conversely, if $v \in \bigcap_{i} \mathcal{W}\left(\hat{h}_{i}\right)$, then $\pi_{\alpha}(v)$ has diameter more than N, since v crosses h_{I} and h_{J}. By Claim 1, the images of α under projections to the combinatorial hyperplanes bounding the carrier of w are thus parallel to $\alpha=\pi_{\alpha}(v)$, so v crosses every hyperplane crossing α, i.e. $\mathcal{W}(F) \subseteq \bigcap_{w \in \mathcal{W}(\alpha)} \mathcal{W}(w)$.

Now let U be the cubical convex hull of the union of all convex subcomplexes of \tilde{X} parallel to α. Then $U \cong \alpha \times \alpha^{\perp}$, where α^{\perp} is the orthogonal complement of α (see HS20, Definition 1.10]). The above discussion and [HS20, Lemma 1.11] show that F is parallel to $\{x\} \times \alpha^{\perp}$ for some $x \in \alpha$. Since the $h_{i} \cap \widetilde{Y}$ are all parallel, $h_{1} \cap \tilde{Y} \subset F$, and $h_{1} \cap \alpha \in h_{1} \cap \tilde{Y}$, so $F \cap U \neq \varnothing$,
whence in fact $F=\{x\} \times \alpha^{\perp}$ for some $x \in \alpha$. Since $\lambda\left(\{x\} \times \alpha^{\perp}\right)=\{\lambda x\} \times \alpha^{\perp}$, there are finitely many orbits of such subcomplexes (at most the translation length of λ).

Case II: Suppose that some h_{i}, h_{j} are separated by the edge space α (up to translation this is the negation of the definition of Case I). Since the gate map from a hyperplane on one side of α to a hyperplane on the other factors through π_{α}, Claim 1 implies F is parallel to α or has diameter at most N. There are finitely many orbits of subsets of diameter at most N, so it remains to show that there are finitely many orbits of combinatorial lines parallel to α.

Consider $U=\alpha \times \alpha^{\perp}$, the convex hull of the union of all lines parallel to α (whose 0 -skeleton is the union of the 0 -skeleta of the lines). For $g \in G$, the subcomplex $g U=(g \alpha) \times(g \alpha)^{\perp}$ is the convex hull of the parallel copies of $g \alpha$. We claim $\operatorname{Stab}_{G}(U)$ acts on U cocompactly. Suppose infinitely many translates $g_{i} U$ intersect some ball in \tilde{X}. Since α is unbounded and \tilde{X} is locally finite, there exist $a, b \in \widetilde{X}$ such that $\mathrm{d}(a, b)>N$ and the following holds: there exist distinct $g_{i} U, g_{j} U$ with $a, b \in g_{i} U \cap g_{j} U$. Hence there exist combinatorial lines α_{i}, α_{j}, respectively parallel to $g_{i} \alpha, g_{j} \alpha$, such that $a, b \in \alpha_{i} \cap \alpha_{j}$. This implies that $\operatorname{diam}\left(\pi_{g_{i} \alpha}\left(g_{j} \alpha\right)\right)>N$, so since λ is N-controlled, $g_{i} \alpha, g_{j} \alpha$ are parallel, so $g_{i} U=g_{j} U$. Hence the family of translates of U is locally finite, so by HS20, Lemma 2.3], $\operatorname{Stab}_{G}(U)$ acts on U cocompactly. Since $\alpha \cong \mathbb{R}$ has discrete cubical isometry group, [NS13, Corollary 2.7] implies that $\operatorname{Stab}_{G}(U)$ virtually splits as $\operatorname{Stab}_{G}(\alpha) \times H$, where H acts cocompactly on each parallel copy of α^{\perp}. Thus U, hence \tilde{X}, contains finitely many orbits of lines parallel to α.

Conclusion: Each case added finitely many G-orbits to $\mathfrak{F}_{0}^{\prime}$, so the claimed \mathfrak{F}_{0} exists.
By [HS20, Corollary 2.2] and Claim 2, $\mathfrak{F}=G \cdot \mathfrak{F}_{0}$. So \mathfrak{F} contains finitely many G-orbits of subcomplexes, each of whose stabiliser acts on it cocompactly by [HS20, Proposition 2.7], so since the G-action on \tilde{X} is geometric, any ball intersects finitely many elements of \mathfrak{F}.

2. No colourable HHG structure

On the other hand:
Proposition 2.1. The group G does not admit a colourable $H H G$ structure.
We use a statement about virtually abelian subgroups of HHGs:
Proposition 2.2 (Invariant quasiflats for virtually abelian subgroups). Let (G, S) be an $H H G$. Let $T \subset G$ be a virtually \mathbb{Z}^{k} subgroup for some $k \geqslant 1$. Then there exists $\ell \geqslant k$ and $U_{1}, \ldots, U_{\ell} \in \mathfrak{S}$ such that the following hold:
(1) $\left\{U_{1}, \ldots, U_{\ell}\right\}$ is T-invariant.
(2) $U_{i} \perp U_{j}$ for $1 \leqslant i<j \leqslant \ell$.
(3) There exists $L<\infty$ such that $\operatorname{diam}\left(\pi_{V}(T)\right) \leqslant L$ for $V \in \mathfrak{S}-\left\{U_{1}, \ldots, U_{\ell}\right\}$.
(4) For each $i \leqslant \ell$, the image $\pi_{U_{i}}(T)$ of T in $\mathcal{C} U_{i}$ is a quasi-line.

Hence the (T-invariant) hierarchically quasiconvex hull F_{T} of T is quasi-isometric to \mathbb{Z}^{ℓ}.
Hierarchically quasiconvex hulls are discussed in [BHS19, Section 6]. The proposition is stated as [HRSS22, Proposition 2.17], where a proof can also be found, using [PS20]. ${ }^{1}$ Now return to the group G (and the subgroups Λ, T) from $\operatorname{Section} 1$, with (G, \mathfrak{S}) an arbitrary HHG structure. We recall that Λ is an irreducible lattice in the product of two trees, and T is virtually \mathbb{Z}^{3}, being a 3-dimensional crystallographic group.

Lemma 2.3. Recall that $T=\langle x, y, t\rangle$, and $t x t^{-1}=y, t y t^{-1}=x^{-1}$. Let F_{T} and $U_{1}, \ldots, U_{\ell} \in \mathfrak{S}$ be as in Proposition 2.2. Then $\ell=3$, and there exists $i \in\{1,2,3\}$ such that $t U_{i} \perp U_{i}$.

[^1]Proof. By Proposition 2.2, $\ell \geqslant 3$, and F_{T} provides a quasi-isometric embedding $\mathbb{Z}^{\ell} \rightarrow G$. By composing with an orbit map $G \rightarrow \widetilde{X}$, we thus get a quasi-isometric embedding $\mathbb{Z}^{\ell} \rightarrow \widetilde{X}^{(0)}$, since the action of G on \widetilde{X} is geometric by construction. Lemma 1.5 gives $\ell=3$.

To show that $t U_{i} \perp U_{i}$ for some i, we show that t acts nontrivially on $\left\{U_{1}, U_{2}, U_{3}\right\}$, which consists of pairwise orthogonal elements. Assume to the contrary that $t U_{i}=U_{i}$ for all i.

Since T acts properly on F_{T}, and x has infinite order, up to relabelling, x^{m} fixes some U_{j} and acts loxodromically on $\mathcal{C} U_{j}$, for some $m>0$. Hence $t x^{m} t^{-1}=y^{m}$ fixes $t U_{j}=U_{j}$ and acts loxdromically on $\mathcal{C} U_{j}$.

There are two cases. In the first case, x^{m} and y^{-m} translate in the "same direction" along the quasiline $\mathcal{C} U_{j}$, i.e. there exists L_{0} such that $\mathrm{d}_{U_{j}}\left(x^{m n}, y^{-m n}\right) \leqslant L_{0}$ for all integers $n>0$. So, applying the relations, we get

$$
\begin{aligned}
\mathrm{d}_{U_{j}}\left(x^{m n}, y^{m n}\right) & =\mathrm{d}_{U_{j}}\left(t y^{-m n} t^{-1}, t x^{m n} t^{-1}\right) \\
& \leqslant \mathrm{d}_{U_{j}}\left(t y^{-m n}, t x^{m n}\right)+\mathrm{d}_{U_{j}}\left(t y^{-m n} t^{-1}, t y^{-m n}\right)+\mathrm{d}_{U_{j}}\left(t x^{m n} t^{-1}, t x^{m n}\right) \\
& \leqslant L_{0}+2 \mathrm{~d}_{U_{j}}\left(1, t^{-1}\right)
\end{aligned}
$$

which is bounded independently of n. Here we have used that t, x^{m}, y^{m} fix U_{j} and act on $\mathcal{C} U_{j}$ by isometries. An application of the triangle inequality now shows that $\mathrm{d}_{U_{j}}\left(y^{-m n}, y^{m n}\right)$ is bounded independently of n, contradicting that y^{m} is loxodromic.

In the second case, x^{m} and y^{m} translate in the same direction, i.e. there exists L_{0} such that $\mathrm{d}_{U_{j}}\left(x^{m n}, y^{m n}\right) \leqslant L_{0}$ for all integers $n>0$. A similar computation as above bounds $\mathrm{d}_{U_{j}}\left(x^{-m n}, y^{m n}\right)$ independently of n, and we apply the triangle inequality to contradict that x^{m} is loxodromic. Either case being impossible, we conclude that x cannot act loxodromically on any U_{j}. Since this contradicts properness of the T-action, we must have that the $\langle t\rangle$-action on $\left\{U_{1}, U_{2}, U_{3}\right\}$ is nontrivial, as required.

Now we are ready to prove the main proposition:
Proof of Proposition 2.1. Suppose that (G, \mathfrak{S}) is a colourable HHG structure on G. Then G acts on the finite set of colours; let $G^{\prime} \leqslant f . i . G$ be the kernel of this action. By Lemma 1.4 $t \in G^{\prime}$. So, for all $U \in \mathfrak{S}$, the elements U and $t U$ have the same colour and are thus transverse. On the other hand, by Lemma 2.3, there exists $U \in \mathfrak{S}$ such that $t U \perp U$. This is a contradiction.

3. Remarks

We conclude with some remarks:
Remark 3.1. This example shows that colourability is not preserved by the Berlai-Robbio combination theorem, answering a question from HP22].
Remark 3.2 (Refinement of Proposition 2.2. In our application of Proposition 2.2, the conclusion $\ell=k$ came from considerations about the rank of G as a coarse median space, a global property of this particular group. It would be nice to know whether the cubical flat torus theorem of Woodhouse-Wise [WW17, Theore 3.6] and related results of Genevois [Gen21] have HHG analogues. Specifically, if $T \leqslant G$ is virtually \mathbb{Z}^{k}, and has no finite-index subgroup contained in a $\mathbb{Z}^{k^{\prime}}$ subgroup of G with $k^{\prime}>k$, does the conclusion of Proposition 2.2 hold with $\ell=k$, i.e. is every highest abelian subgroup hierarchically quasiconvex? If T is not highest, do orbits of T have the property that any two orbit points are joined by at least one hierarchy path lying in a bounded neighbourhood of the orbit? (One can't expect better, since once can choose, say, $\mathbb{Z}^{2} \leqslant \mathbb{Z}^{3}$ that is not coarsely a median subalgebra.)
Remark 3.3 (Simpler examples). Is there a rank-2 non-colourable HHG? The rank of (G, \mathfrak{S}) is the largest n such that there exists pairwise orthogonal $U_{1}, \ldots, U_{n} \in \mathfrak{S}$ with each $\mathcal{C} U_{i}$ unbounded. Rank-1 HHGs are hyperbolic [BHS21], so admit colourable HHG structures (the trivial one).

Remark 3.4 (Connection with separability). Colourability of an HHG (G, \mathfrak{S}) is related to separability of certain hierarchically quasiconvex subgroups of G. Specifically, under the mild hypothesis that the standard product regions in G are cosets of a finite collection of subgroups, it is shown in [HP22, Proposition 3.2] that (G, \mathfrak{S}) is colourable if these product region subgroups are separable in G. In the forthcoming [CRHK22], this is explored a bit further; for instance, colourability of the usual HHG structure on the mapping class group is related to separability of multicurve stabilisers, established by Leininger-McReynolds in LM07. Examples make it hard to imagine a partial converse (colourability implying separability of the product region subgroups under reasonable additional assumptions), though: any hyperbolic group G with an infinite quasiconvex subgroup H admits an HHG structure - readily seen to be colourable where the product regions are cosets of H [Spr17, Theorem 1]. But whether H is in general separable in G reduces to the question of residual finiteness of hyperbolic groups [AGM09.

Remark 3.5 (Shepherd's factor system-free examples). We saw that Λ and λ can be chosen so that λ is N-controlled for some N. This yields other HHGs along the lines of the construction of G. For example, one could form an HNN extension conjugating λ to itself, as in BHS17, Figure 1], or double Λ along λ. The universal covers have factor systems by arguing as in the cubical proof of Proposition 1.6. However, Sam Shepherd has observed ${ }^{2}$ that there will not be a factor system when λ is not N-controlled for any N. Shepherd constructed examples where Λ is associated to a finite-state automaton and λ is one of the generators of the BMW presentation; Wise's anti-torus Wis07] provides additional examples, as noted in [She22]. Before Shepherd's observation, examples of proper cocompact CAT(0) cube complexes without factor systems were not known. In HS20, conditions are given implying existence of a factor system; examples involving uncontrolled elements of BMW groups fail the essential index condition from [HS20].

References

[ABD21] Carolyn Abbott, Jason Behrstock, and Matthew Gentry Durham. Largest acylindrical actions and stability in hierarchically hyperbolic groups. Trans. Amer. Math. Soc. Ser. B, 8:66-104, 2021. With an appendix by Daniel Berlyne and Jacob Russell.
[AGM09] Ian Agol, Daniel Groves, and Jason Fox Manning. Residual finiteness, QCERF and fillings of hyperbolic groups. Geom. Topol., 13(2):1043-1073, 2009.
[BBF15] Mladen Bestvina, Ken Bromberg, and Koji Fujiwara. Constructing group actions on quasi-trees and applications to mapping class groups. Publ. Math. Inst. Hautes Études Sci., 122:1-64, 2015.
[BHS17] Jason Behrstock, Mark F. Hagen, and Alessandro Sisto. Hierarchically hyperbolic spaces, I: Curve complexes for cubical groups. Geom. Topol., 21(3):1731-1804, 2017.
[BHS19] Jason Behrstock, Mark Hagen, and Alessandro Sisto. Hierarchically hyperbolic spaces II: Combination theorems and the distance formula. Pacific J. Math., 299(2):257-338, 2019.
[BHS21] Jason Behrstock, Mark F. Hagen, and Alessandro Sisto. Quasiflats in hierarchically hyperbolic spaces. Duke Math. J., 170(5):909-996, 2021.
[Bow18] Brian H. Bowditch. Large-scale rigidity properties of the mapping class groups. Pacific J. Math., 293(1):1-73, 2018.
[Bow19] Brian H. Bowditch. Notes on coarse median spaces. In Beyond hyperbolicity, volume 454 of London Math. Soc. Lecture Note Ser., pages 3-24. Cambridge Univ. Press, Cambridge, 2019.
[BR20] Federico Berlai and Bruno Robbio. A refined combination theorem for hierarchically hyperbolic groups. Groups Geom. Dyn., 14(4):1127-1203, 2020.
[Cap19] Pierre-Emmanuel Caprace. Finite and infinite quotients of discrete and indiscrete groups. In Groups St Andrews 2017 in Birmingham, volume 455 of London Math. Soc. Lecture Note Ser., pages 16-69. Cambridge Univ. Press, Cambridge, 2019.
[CRHK22] Montserrat Casals-Ruiz, Mark Hagen, and Ilya Kazachkov. Real cubings and asymptotic cones of hierarchically hyperbolic groups. Working draft, 2022.
[DHS20] Matthew Gentry Durham, Mark F. Hagen, and Alessandro Sisto. Correction to the article Boundaries and automorphisms of hierarchically hyperbolic spaces. Geom. Topol., 24(2):1051-1073, 2020.

[^2][DMS20] Matthew G Durham, Yair N Minsky, and Alessandro Sisto. Stable cubulations, bicombings, and barycenters. arXiv preprint arXiv:2009.13647, 2020.
[Gen21] Anthony Genevois. Median sets of isometries in CAT(0) cube complexes and some applications. Michigan Mathematical Journal, 1(1):1-46, 2021.
[Hag07] Frédéric Haglund. Isometries of $\mathrm{CAT}(0)$ cube complexes are semi-simple. arXiv preprint arXiv:0705.3386, 2007.
[Hag22] Mark Hagen. Large facing tuples and a strengthened sector lemma. Tunis. J. Math., 4(1):55-86, 2022.
[HP22] Mark F Hagen and Harry Petyt. Projection complexes and quasimedian maps. Alg. Geom. Topol., 22(7):3277-3304, 2022.
[HRSS22] Mark Hagen, Jacob Russell, Alessandro Sisto, and Davide Spriano. Equivariant hierarchically hyperbolic structures for 3-manifold groups via quasimorphisms. https://arxiv.org/abs/2206.12244, 2022.
[HS20] Mark F. Hagen and Tim Susse. On hierarchical hyperbolicity of cubical groups. Israel J. Math., 236(1):45-89, 2020.
[HW08] Frédéric Haglund and Daniel T. Wise. Special cube complexes. Geom. Funct. Anal., 17(5):1551-1620, 2008.
[LM07] Christopher J. Leininger and D. B. McReynolds. Separable subgroups of mapping class groups. Topology Appl., 154(1):1-10, 2007.
[NS13] Amos Nevo and Michah Sageev. The Poisson boundary of CAT(0) cube complex groups. Groups Geom. Dyn., 7(3):653-695, 2013.
[Pet21] Harry Petyt. Mapping class groups are quasicubical. arXiv preprint arXiv:2112.10681, 2021.
[PS20] Harry Petyt and Davide Spriano. Unbounded domains in hierarchically hyperbolic groups. arXiv preprint arXiv:2007.12535, 2020.
[Rol16] Martin Roller. Poc sets, median algebras and group actions. arXiv preprint arXiv:1607.07747, 2016.
[She22] Sam Shepherd. A cubulation with no factor system. arXiv preprint arXiv:2208.10421, 2022.
[Spr17] Davide Spriano. Hyperbolic HHS I: Factor systems and quasi-convex subgroups. arXiv preprint arXiv:1711.10931, 2017.
[Wis07] Daniel T. Wise. Complete square complexes. Comment. Math. Helv., 82(4):683-724, 2007.
[WW17] Daniel T. Wise and Daniel J. Woodhouse. A cubical flat torus theorem and the bounded packing property. Israel J. Math., 217(1):263-281, 2017.

School of Mathematics, University of Bristol, Bristol, United Kingdom

Email address: markfhagen@posteo.net

[^0]: Date: February 9, 2023.
 2010 Mathematics Subject Classification. 20F65.
 Key words and phrases. hierarchically hyperbolic group, colouring.

[^1]: ${ }^{1}$ This proposition was also proved by Paul Plummer in unpublished work.

[^2]: ${ }^{2}$ Personal communication, and now see also [She22].

