
NON-COLOURABLE HIERARCHICALLY HYPERBOLIC GROUPS

MARK HAGEN

Abstract. We exhibit a hierarchically hyperbolic group for which no hierarchically hyperbolic
structure is colourable, answering an (implicit) question of Durham-Minsky-Sisto.

Introduction

An important feature of the mapping class groupMCGpSq of a �nite-type surface S, observed
by Bestvina-Bromberg-Fujiwara [BBF15], is the existence of a �nite colouring of the subsurfaces
of S such that subsurfaces of the same colour overlap. Together with similar statements about
compact special groups (see [HW08] and [BHS17, Section 11]), this suggests a useful property
of some hierarchically hyperbolic groups (HHGs), which include the aforementioned examples.

This property is colourability, formalised in [DMS20, HP22]. One purpose of colourability is to
connect the hierarchically hyperbolic geometry to the projection systems introduced in [BBF15].
In [HP22, Pet21], this is used to produce quasi-isometries from various hierarchically hyperbolic
groups to CAT(0) cube complexes. In [DMS20], it is used to apply cubical geometry to hierar-
chically hyperbolic groups, for example to prove semihyperbolicity of the mapping class group.
Colourability of HHGs is also used in the forthcoming paper [CRHK22] on asymptotic cones of
HHG. In [DMS20, HP22], the authors (implicitly) ask for an example of a non-colourable HHG.
The purpose of this note is to describe one.

We recall the de�nition of colourability given in [DMS20]; the de�nition in [HP22] is the
same, up to passing to �nite-index subgroups. We �rst recall that a hierarchically hyperbolic
group pG,Sq is a �nitely generated group G and a set S with three mutually exclusive relations
(nesting, orthogonality, and transversality, denoted Ď,K,&) such that G acts co�nitely on S,
preserving the relations. Each U P S is associated to a hyperbolic space CU and a coarsely
lipschitz coarse map πU : GÑ CU . This setup must satisfy some geometric axioms; see [BHS19,
De�nition 1.1]. There are equivariance conditions not needed for the de�nition of colourability,
which we postpone. The preceding data is an HHG structure for G.

De�nition. An HHG pG,Sq is colourable if there is a �nite partition S “
Ůχ
i“1 Si such that:

‚ for all i ď χ and all U, V P Si, we have U&V ;
‚ the action of G on S induces an action by permutations on the set tSiu

χ
i“1 of colours.

A group G may admit distinct HHG structures, some colourable and some not.
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1. The example

We will construct a group G as an amalgam

G “ Λ ˚
xλy“xty

T,

of a non-residually �nite cubical group Λ and a 3�dimensional crystallographic group T . We
will choose t so that, in any hierarchically hyperbolic structure on G, t takes some domain to
an orthogonal domain. We will choose λ so that any �nite-index subgroup of G contains t “ λ.
There is also some care required in choosing λ so that G is actually an HHG. This section
involves CAT(0) cube complexes � we refer to [BHS17, HS20] for background.

1.1. The group Λ and the element λ. We start with a basic fact phrased in cubical terms:

Lemma 1.1. Let C be a proper CAT(0) cube complex on which the group Γ acts geometrically.
Let γ P Γ have a combinatorial axis α0 and suppose that the cubical convex hull α of α0 is
contained in a neighbourhood of α0. Let πα : C Ñ α be the gate map (see e.g. [Hag22, Section
2.2]). Then for all h P Γ, either πα : h ¨αÑ α is a cubical isomorphism, or diampπαph ¨αqq ă 8.

Proof. Since xγy acts cocompactly on α0 and α is xγy�invariant and contained in a neighbour-
hood of α0, the action of xγy on α is cocompact. Since the Γ�action is geometric, each translate
gα has bounded Hausdor� distance from the image of gxγy under a �xed orbit map, and hence
any ball in C intersects �nitely many translates of α.

Let R “ dCpα, hαq, so that dCpα, ghαq “ R for all g P xγy. For any x P α and s ě 0, if
gπαphαq X Bα

s pxq ‰ H, then ghα X BC
R`spxq ‰ H. The number of such ghα is �nite. Hence

the xγy�translates of παphαq form a locally �nite family in α. So by e.g. [HS20, Lemma 2.3],
the action of Stabxγypπαphαqq (which is virtually xγy X xγyh) on παphαq is cocompact. So, if

xγy X hxγyh´1 “ t1u, then παph ¨ αq is compact. Otherwise, there exists n ‰ 0 such that
hγnh´1 “ γ˘n, whence παph ¨ αq “ α since γn skewers the same hyperplanes as γ. �

Corollary 1.2. Let T1, T2 be locally �nite trees and let Γ ď AutpT1qˆAutpT2q act geometrically
on T1 ˆ T2. Let γ P Γ �x v P T2 and act hyperbolically on T1 ˆ tvu, with axis α. Let ᾱ be the
image of α under the natural projection to T1. Then for all h P Γ, either hᾱ “ ᾱ, or hᾱ X ᾱ
has �nite diameter (including the possibility that it is empty).

Proof. Since α is a geodesic in T1 ˆ tvu, we have that α is convex in T1 ˆ T2. Fix h P Γ.
By Lemma 1.1, either hα and α cross exactly the same hyperplanes, or they cross �nitely
many common hyperplanes, since the hyperplanes crossing παphαq are exactly those crossing
both α and hα by e.g. [Hag22, Lemma 2.5]. Since α and hα have trivial projections to T2, the
hyperplanes crossing α (resp. hα) are the preimages under natural projection to T1 of midpoints
of edges in ᾱ (resp. hᾱ), so the edges of ᾱ X hᾱ are in bijection with the hyperplanes crossing
both α and hα, and we are done. �

Now we discuss irreducible lattices in products of trees, following the discussion from [Cap19,
Section 4]. We begin with a (�nite) BMW presentation of a torsion-free BMW group:

Γ “ xAY S | Ry,
so that the associated Cayley graph is the 1�skeleton of a product TA ˆ TS of trees, where the
edges in each TA ˆ txu are labelled with the elements of A, and likewise for TS and S. So,
C “ TA ˆ TS is a proper CAT(0) square complex, and the action of Γ by left multiplication
gives an inclusion Γ Ñ AutpTAq ˆAutpTSq, which we assume is irreducible.

The element γ P Γ ´ t1u is A�convex if there is a vertex v P TS �xed by the image of γ in
AutpTSq. Hence γ has a combinatorial axis α Ă TAˆtvu where the natural projection C Ñ TA
sends α isometrically to the axis ᾱ for γ in TA. (We con�ate α and ᾱ with their images.)
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Corollary 1.2 says that for all h P Γ, either hᾱ “ ᾱ or diamphᾱXᾱq ď Nphq for some Nphq P N
(with Nphq “ 0 if ᾱ X hᾱ “ H). If there exists N ă 8 such that Nphq ď N whenever h P Γ
satis�es hᾱ ‰ ᾱ, then the A�convex element γ is N�controlled. (There can be convex elements
γ that are not N�controlled for any N ; see [Wis07, Section 5] or [She22] or Remark 3.5.)

Following [Wis07], we construct a new irreducible lattice. Let Ā be a copy of A and let a ÞÑ ā
be a bijection AÑ Ā. Let R̄ be obtained from R by, in each relation, replacing each a P A by
ā wherever it occurs (and keeping the elements of S). Let

Λ “ xA\ Ā\ S | R\ R̄y – Γ ˚
xSy

Γ,

which is an irreducible lattice in AutpTAYĀqˆAutpTSq. Let rXΛ “ TAYĀˆTS (whose 1�skeleton
we identify with the Cayley graph of the above BMW presentation of Λ).

Lemma 1.3. There exists λ P Λ´ t1u such that all of the following hold:

‚ λ is AY Ā�convex,
‚ there is a �nite-index subgroup P ď xSy centralising λ,
‚ λ is N�controlled for some N P N, and
‚ every �nite-index subgroup of Λ contains λ.

Proof. We imitate the discussion after Proposition 4.17 in [Cap19]. De�ne a homomorphism
f : Λ Ñ Γ by fpxq “ x for x P S and fpaq “ a for a P A and fpāq “ a for ā P Ā.

Let g P xAY Āy´ t1u be an AY Ā�convex element �xing the image 1S P TS of 1 P rXΛ under

the natural projection rXΛ Ñ TS . Let α Ă TAYĀˆt1Su be the axis of g and let ᾱ be the axis of
g in TAYĀ. Let τ be the translation length of g (which is the same on TAYĀ ˆ TS as on TAYĀ,
by AY Ā�convexity of g). By conjugating, we can assume 1AYĀ P ᾱ.

Consider the �nitely many vertices v1, . . . , vk P TAYĀ at distance at most 2τ from 1AYĀ. For
each i, let yi P Λ be such that yi ¨ 1AYĀ “ vi. We take v1 “ 1AYĀ and y1 “ 1. From the
de�nition of τ , up to relabelling, we can take vk “ g ¨ 1AYĀ and yk “ g. These choices are
not unique, but there are �nitely many yi, and they depend on g but not on the elements h
discussed below.

Let

P “
k

č

i“1

yixSyy´1
i .

Note that rxSy : P s ă 8: the subgroup xSy is commensurated in Λ since the trees tviuˆTS are

all parallel in rXΛ. Let x1, . . . , xr P xSy be left coset representatives for P in xSy.
Suppose additionally that g P ker f . Then for any p P P , we have p P xSyg X xSy, so

g´1pg “ p1 P xSy. Since fpgq “ 1 and f is the identity on xSy, we get
p1 “ fpp1q “ fpg´1pgq “ fppq “ p,

i.e. g commutes with every element of P .
Let h P Λ be such that hᾱX ᾱ ‰ H but hᾱ ‰ ᾱ. For some n P Z, we have dTAYĀ

pᾱ, hgnh´1 ¨

ph1AYĀqq ď τ . Since ᾱ X hᾱ “ ᾱ X phgnh´1qhᾱ, and our goal is to bound diamphᾱ X ᾱq, we
assume n “ 0. (More precisely, let h1 “ hgn. Then h1ᾱ “ hᾱ, and dTAYĀ

pᾱ, h1 ¨ 1AYĀq ď τ ,
and we rede�ne h to be h1.) Translating by an appropriate power of g, using Npgmhq “ Nphq
for all m, we can thus assume dTAYĀ

p1AYĀ, h ¨ 1AYĀq ď 2τ .
Hence there exists i ď k such that h ¨ 1AYĀ “ vi, whence h P yixSy. So, h “ yixjp for

some j ď r and p P P . But hᾱ is the axis of hgh´1 “ yixjpgp
´1x´1

j y´1
i “ yixjgx

´1
j y´1

i ,

so hᾱ “ yixjᾱ. Let N “ maxi1,j1 Npyi1xj1q, where yi1 , xj1 range over the values for which
yi1xj1ᾱ ‰ ᾱ. ThenN ă 8, andN depends on g, τ , and our choice of yi1 and coset representatives
xj1 , but not on h. So for any h for which hᾱ ‰ ᾱ, we have shown Nphq ď N , i.e. g is N�
controlled. Finally, Wise found (see [Cap19, Proposition 4.15]) distinct a, b P A such that
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λ “ ab´1b̄ā´1 lies in every �nite-index subgroup of Λ. Noting that this λ is pAY Āq�convex and
fpλq “ 1 completes the proof. �

Let XΛ “ ΛzpTAYĀ ˆ TSq, which is a compact nonpositively-curved square complex with
one vertex. The element λ P Λ – π1XΛ from Lemma 1.3, which lies in every �nite-index
subgroup of Λ, is represented by a locally convex closed immersed edge-path α̌ in XΛ. Letting
αÑ TAYĀˆTS be any elevation of α̌, we have that α is a convex (based) line (lying in a parallel
copy of TAYĀ ˆ t1Su), and for any two such lifts α, hα, either hᾱ “ ᾱ (and hα, α are parallel)
or diampπαphαqq ď N .

1.2. The crystallographic group T . Let

T “ xx, y, t | xyx´1y´1, txt´1 “ y, tyt´1 “ x´1y.

The group T is isomorphic to a uniform lattice in IsompR3q, where x, y act as unit translations
along two orthogonal axes, and t is a screw-motion rotating the xy�plane by π{2 and translating
distance 1 along its screw-axis. Tile R3 by 3�cubes so that the translation axes for x, y, and
the screw-axis for t, are combinatorial lines. So, T acts freely and cocompactly on the resulting
CAT(0) cube complex, and the quotient XT is a nonpositively-curved cube complex. The
2�skeleton of XT is the presentation complex of the above presentation, and the 3�cube is
attached in the usual way. Let XT pnq be the cubical subdivision of XT in which each hyperplane
is replaced by n parallel copies (see e.g. [Hag07, De�nition 2.3]), so that t P T – π1XT pnq is
represented by an embedded (oriented) combinatorial loop β of length n which is locally convex.

1.3. The group G and its cubical structure. Form a cube complex X by attaching XΛ to
XT p|α̌|q by identifying α̌ and β (preserving orientations). Then X is nonpositively-curved since
it was formed by gluing nonpositively-curved cube complexes along a common locally convex
immersed subcomplex. Let G “ π1X, so that G admits a presentation

G – xΛ, x, y, t | xyx´1y´1, txt´1y´1, tyt´1x, λt´1y.

The universal cover rX ofX is a CAT(0) cube complex on whichG acts freely and cocompactly.

Let rXT p|α̌|q be the image of a �xed lift of the map rXT p|α̌|q Ñ XT p|α̌|q Ñ X, so that rXT p|α̌|q
is a convex subcomplex isomorphic to the standard tiling of E3 by 3�cubes, with stabilizer T .

Likewise, we have a convex subcomplex rXΛ, isomorphic to a product of two trees, stabilised by

Λ. Abusing language slightly, we call translates of α edge spaces and translates of rXT p|α̌|q, rXΛ

vertex spaces.

Lemma 1.4. Let G1 ď G be a �nite-index subgroup. Then t P G1.

Proof. We have rΛ : ΛXG1s ď rG : G1s ă 8, so λ P ΛXG1. Since λ “ t in G, we have t P G1. �

Lemma 1.5. Let k ě 0 and let q : Zk Ñ rXp0q be a quasi-isometric embedding. Then k ď 3.

Proof. There are various ways to see this. For instance, since rX is a 3�dimensional CAT(0)
cube complex, its 0�skeleton (with the graph metric) is a coarse median space of rank 3 (see
e.g.[Bow19, Section 4]), so this follows from [Bow18, Lemma 6.10]. �

1.4. G is an HHG. Here is the full list of equivariance properties from the de�nition of a
hierarchically hyperbolic group pΓ,Sq. We saw that Γ must act on S co�nitely, preserving
Ď,K,&. For each g, h P Γ and U, V P S, we also require:

‚ There is an isometry g : CU Ñ CgU , and the composition CU h
Ñ ChU g

Ñ CghU is gh.
‚ πgU pghq “ gπU phq.

‚ If U&V or U Ĺ V and ρUV Ă CV is as in [BHS19, De�nition 1.1], then gρUV “ ρgUgV .
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This de�nition follows [PS20] and is simpler than the coarse version in [BHS19]. The coarse
version implies the above one [DHS20, Section 2]. The goal of this section is to prove:

Proposition 1.6. The group G is a hierarchically hyperbolic group.

We give two proofs, one using the combination theorem from [BR20] and one using cubes.

Proof using the Berlai-Robbio combination theorem. We �rst describe an HHS structure on TAYĀ.
Let S1 “ tgᾱ : g P Λu\tS1u, where S1 is just a symbol; we declare distinct translates of ᾱ to be
transverse, and declare them to be nested in S1. Since λ is N�controlled, [BHS19, Theorem 9.3]
implies that pTAYĀ,S1q is an HHS, where Cgᾱ “ gᾱ – R, and CS1 is the quasi-tree obtained
from TAYĀ by coning o� the subspaces gᾱ. (The same conclusion also follows from [Spr17,
Theorem 4.6], where the N�controlled property is used to verify [Spr17, De�nition 4.2.2].)

We equip TS with the trivial HHS structure pTS ,S2q where S2 “ tS2u and CS2 “ TS . Finally,
let S3 “ S1 \ S2 \ tS3u. We declare everything in S1 orthogonal to everything in S2, and

everything is nested in S3. The space CS3 is a point. By [BHS19, Proposition 8.27], p rXΛ,S3q

is an HHS, and it is readily checked that the actions of Λ on TAYĀ and TS induce an action on
S3 (with four orbits) and the isometries between hyperbolic spaces required to make it an HHG
structure pΛ,S3q. It is readily veri�ed that this has the intersection property from [BR20] and
the clean containers property from [ABD21].

The action of T on rXT p|α̌|q yields a hierarchically hyperbolic structure via [BHS17, Remark
13.2], which has clean containers by [HS20, Theorem C], while the intersection property can be
deduced directly from De�nition 8.1 and Remark 13.2 of [BHS17]. The t�axis is a codimension�
2 combinatorial hyperplane, so its parallelism class is in the index set of this HHG structure.
Moreover, by discarding some elements of the factor system that are single points, we can assume
that the t�axis is Ď�minimal. The associated hyperbolic space is a copy of R, on which t acts
as a length�|α̌| translation.

Equip the edge-groups (conjugates in G of xty “ xλy) with the trivial HHG structure: the
underlying hyperbolic space is a line mapping isometrically to ᾱ on the Λ side, and to the t�axis
on the T side. This veri�es the full hieromorphism hypothesis from [BR20, Corollary B] and
the coarse lipschitz requirement from that hypothesis. The quasiconvex hypothesis of [BR20,

Corollary B] holds since the t�axis is convex in rXT p|α̌|q while α is hierarchically quasiconvex in
pΛ,S3q (see [BHS19, De�nition 5.1]) by construction (using that λ �xes a point in TS). The
comparison maps hypothesis holds since comparison maps are isomorphisms of combinatorial
lines. So [BR20, Corollary B] � the combination theorem � yields an HHG structure. �

Remark 1.7. The proof fails as follows if λ is not N�controlled. The combination theorem
[BR20, Corollary B] requires that the vertex group HHG structures contain the edge group HHG
structures, which forced us to include ᾱ and its translates in S3. But if ᾱ has arbitrarily large
intersections with its translates, it cannot participate in an HHS structure on TAYĀ; either the
consistency or complexity axiom from [BHS19, De�nition 1.1] would be violated.

Proof using the cubical structure. We check that the CAT(0) cube complex rX has a factor sys-
tem, in the sense of [BHS17, De�nition 8.1], so that the existence of an HHG structure follows
from [BHS17, Remark 13.2] or [HS20, Theorem A]. Let F denote the smallest collection of convex

subcomplexes of rX containing rX, containing every combinatorial hyperplane and subcomplex
parallel to a combinatorial hyperplane, and having the property that if F, F 1 P F, then the image
of F 1 under the gate map to F is also in F. To check that F is a factor system, it su�ces to

produce χ ă 8 such that any vertex of rX lies in at most χ elements of F.

Claim 1. For each h Ă rX a combinatorial hyperplane, either παphq “ α, or diampπαphqq ď N .

Proof of Claim 1. By de�nition, h is a component of the boundary of the carrier of some hy-
perplane ĥ. If ĥ crosses α, then παphq is a single point, so suppose that ĥ does not cross α.
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If ĥ crosses a vertex space containing α, then, because of the product structures of the vertex
spaces, α is parallel to a subcomplex of h, so παphq “ α, or παphq is a point. Otherwise, there
is a sequence g1α, g2α, ¨ ¨ ¨ , gkα of edge spaces separating α from h, and παphq “ παpπg1αphqq.
By induction on k, πg1αphq is either the whole of g1α, or has diameter at most N . Projecting to
α doesn't increase distances, and the projection of g1α to α is either α or has diameter at most
N since λ is N�controlled, so the claim follows. �

Claim 2. There is a �nite F0 Ă F such that the following holds. Let h1, . . . , hn Ă rX be com-
binatorial hyperplanes, let πhi be the gate map to hi, and let F “ πh1pπh2p¨ ¨ ¨πhn´1phnq ¨ ¨ ¨ qq.
Then F P G ¨ F0.

Proof of Claim 2. We consider three cases.
Case 0: Suppose d

rX
phi, hjq ď 10N for all i, j. Since the convex hull of the 10N�neighbourhood

of hi is contained in the 10N dim rX�neighbourhood of hi (by e.g. [HP22, Lemma 4.2]), the
Helly property for convex subcomplexes ([Rol16, Theorem 2.2]) says the hi all intersect some

10N dim rX�ball B about a vertex. There are �nitely many G�orbits of such balls, each inter-
secting �nitely many hyperplanes. So up to the G�action, there are �nitely many possibilities
for the collection th1, . . . , hnu and thus a �nite collection F10 of subcomplexes with F P G ¨ F10.

So, for the rest of the proof, we assume that there exist I, J ď n such that d
rX
phI , hJq ą 10N .

Case I: Suppose that any two of the hi intersect a common vertex space. By applying the
Helly property to the Bass-Serre tree of the splitting of G and the subtrees determined by the

various hi, we get a vertex space rY such that each hi X rY ‰ H.
Subcase: no common translates of α: Suppose some hi, hj do not cross a common translate

of α in rY . Then any hyperplane crossing hi and hj crosses hi X rY and hj X rY . So F arises by

projecting the hyperplanes hs X rY , 1 ď s ď n of rY onto one another, i.e. it lies in the factor

system on rY (which exists since rY is the product of two locally �nite trees or a copy of the
standard cubulation of R3). There are �nitely many orbits of such F .

So we now assume the hi are disjoint (otherwise two cross in rY , and so at least one cannot

cross any translate of α), and any two cross some common translate of α in rY .

A translate of α crossing all hi: Suppose hI , hJ both cross gα Ă rY . Suppose that some hi
does not cross gα. Inside rY , choose hα crossing hi, hI and h1α crossing hi, hJ . Let pi, pI , pJ
be the projections of hi, hI , hJ to TAYĀ (which are necessarily points). The part of gᾱ between
pI , pJ has length at least 10N . For each pair of distinct axes in hᾱ, h1ᾱ, gᾱ, the (nonempty)
intersection has length at most N . This is impossible unless hᾱ “ gᾱ or h1ᾱ “ gᾱ, whence
pi P gᾱ, i.e. hi crosses gα.

Common translate case: So, by translating, α Ă rY and hi X α ‰ H for all i ď n. We claim

WpF q “
č

wPWpαq
Wpwq,

where, for a subcomplex or hyperplane z, Wpzq means the set of hyperplanes in rX crossing z.

Each hi is a component of the boundary of the carrier of a hyperplane ĥi PWpαq, so by the

de�nition of F , we have WpF q “
Şn
i“1 Wpĥiq Ě

Ş

wPWpαqWpwq. Conversely, if v P
Ş

iWpĥiq,
then παpvq has diameter more than N , since v crosses hI and hJ . By Claim 1, the images of α
under projections to the combinatorial hyperplanes bounding the carrier of w are thus parallel
to α “ παpvq, so v crosses every hyperplane crossing α, i.e. WpF q Ď

Ş

wPWpαqWpwq.
Now let U be the cubical convex hull of the union of all convex subcomplexes of rX parallel

to α. Then U – α ˆ αK, where αK is the orthogonal complement of α (see [HS20, De�nition
1.10]). The above discussion and [HS20, Lemma 1.11] show that F is parallel to txu ˆ αK for

some x P α. Since the hiX rY are all parallel, h1X rY Ă F , and h1Xα P h1X rY , so F XU ‰ H,
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whence in fact F “ txu ˆαK for some x P α. Since λptxu ˆαKq “ tλxu ˆαK, there are �nitely
many orbits of such subcomplexes (at most the translation length of λ).
Case II: Suppose that some hi, hj are separated by the edge space α (up to translation this

is the negation of the de�nition of Case I). Since the gate map from a hyperplane on one side
of α to a hyperplane on the other factors through πα, Claim 1 implies F is parallel to α or has
diameter at most N . There are �nitely many orbits of subsets of diameter at most N , so it
remains to show that there are �nitely many orbits of combinatorial lines parallel to α.

Consider U “ αˆαK, the convex hull of the union of all lines parallel to α (whose 0�skeleton
is the union of the 0�skeleta of the lines). For g P G, the subcomplex gU “ pgαq ˆ pgαqK

is the convex hull of the parallel copies of gα. We claim StabGpUq acts on U cocompactly.

Suppose in�nitely many translates giU intersect some ball in rX. Since α is unbounded and rX

is locally �nite, there exist a, b P rX such that dpa, bq ą N and the following holds: there exist
distinct giU, gjU with a, b P giUXgjU . Hence there exist combinatorial lines αi, αj , respectively
parallel to giα, gjα, such that a, b P αi X αj . This implies that diampπgiαpgjαqq ą N , so since
λ is N�controlled, giα, gjα are parallel, so giU “ gjU . Hence the family of translates of U is
locally �nite, so by [HS20, Lemma 2.3], StabGpUq acts on U cocompactly. Since α – R has
discrete cubical isometry group, [NS13, Corollary 2.7] implies that StabGpUq virtually splits

as StabGpαq ˆ H, where H acts cocompactly on each parallel copy of αK. Thus U , hence rX,
contains �nitely many orbits of lines parallel to α.
Conclusion: Each case added �nitely many G�orbits to F10, so the claimed F0 exists. �

By [HS20, Corollary 2.2] and Claim 2, F “ G ¨ F0. So F contains �nitely many G�orbits of
subcomplexes, each of whose stabiliser acts on it cocompactly by [HS20, Proposition 2.7], so

since the G�action on rX is geometric, any ball intersects �nitely many elements of F. �

2. No colourable HHG structure

On the other hand:

Proposition 2.1. The group G does not admit a colourable HHG structure.

We use a statement about virtually abelian subgroups of HHGs:

Proposition 2.2 (Invariant quasi�ats for virtually abelian subgroups). Let pG,Sq be an HHG.
Let T Ă G be a virtually Zk subgroup for some k ě 1. Then there exists ` ě k and U1, . . . , U` P S
such that the following hold:

(1) tU1, . . . , U`u is T�invariant.
(2) UiKUj for 1 ď i ă j ď `.
(3) There exists L ă 8 such that diampπV pT qq ď L for V P S´ tU1, . . . , U`u.
(4) For each i ď `, the image πUipT q of T in CUi is a quasi-line.

Hence the (T�invariant) hierarchically quasiconvex hull FT of T is quasi-isometric to Z`.

Hierarchically quasiconvex hulls are discussed in [BHS19, Section 6]. The proposition is stated
as [HRSS22, Proposition 2.17], where a proof can also be found, using [PS20].1 Now return to
the group G (and the subgroups Λ, T ) from Section 1, with pG,Sq an arbitrary HHG structure.
We recall that Λ is an irreducible lattice in the product of two trees, and T is virtually Z3, being
a 3�dimensional crystallographic group.

Lemma 2.3. Recall that T “ xx, y, ty, and txt´1 “ y, tyt´1 “ x´1. Let FT and U1, . . . , U` P S
be as in Proposition 2.2. Then ` “ 3, and there exists i P t1, 2, 3u such that tUiKUi.

1This proposition was also proved by Paul Plummer in unpublished work.



NON-COLOURABLE HHG 8

Proof. By Proposition 2.2, ` ě 3, and FT provides a quasi-isometric embedding Z` Ñ G. By

composing with an orbit map G Ñ rX, we thus get a quasi-isometric embedding Z` Ñ rXp0q,

since the action of G on rX is geometric by construction. Lemma 1.5 gives ` “ 3.
To show that tUiKUi for some i, we show that t acts nontrivially on tU1, U2, U3u, which

consists of pairwise orthogonal elements. Assume to the contrary that tUi “ Ui for all i.
Since T acts properly on FT , and x has in�nite order, up to relabelling, xm �xes some Uj

and acts loxodromically on CUj , for some m ą 0. Hence txmt´1 “ ym �xes tUj “ Uj and acts
loxdromically on CUj .

There are two cases. In the �rst case, xm and y´m translate in the �same direction� along
the quasiline CUj , i.e. there exists L0 such that dUj px

mn, y´mnq ď L0 for all integers n ą 0. So,
applying the relations, we get

dUj px
mn, ymnq “ dUj pty

´mnt´1, txmnt´1q

ď dUj pty
´mn, txmnq ` dUj pty

´mnt´1, ty´mnq ` dUj ptx
mnt´1, txmnq

ď L0 ` 2dUj p1, t
´1q,

which is bounded independently of n. Here we have used that t, xm, ym �x Uj and act on CUj by
isometries. An application of the triangle inequality now shows that dUj py

´mn, ymnq is bounded
independently of n, contradicting that ym is loxodromic.

In the second case, xm and ym translate in the same direction, i.e. there exists L0 such
that dUj px

mn, ymnq ď L0 for all integers n ą 0. A similar computation as above bounds

dUj px
´mn, ymnq independently of n, and we apply the triangle inequality to contradict that xm

is loxodromic. Either case being impossible, we conclude that x cannot act loxodromically on
any Uj . Since this contradicts properness of the T�action, we must have that the xty�action on
tU1, U2, U3u is nontrivial, as required. �

Now we are ready to prove the main proposition:

Proof of Proposition 2.1. Suppose that pG,Sq is a colourable HHG structure on G. Then G acts
on the �nite set of colours; let G1 ďf.i. G be the kernel of this action. By Lemma 1.4, t P G1.
So, for all U P S, the elements U and tU have the same colour and are thus transverse. On the
other hand, by Lemma 2.3, there exists U P S such that tUKU . This is a contradiction. �

3. Remarks

We conclude with some remarks:

Remark 3.1. This example shows that colourability is not preserved by the Berlai-Robbio
combination theorem, answering a question from [HP22].

Remark 3.2 (Re�nement of Proposition 2.2). In our application of Proposition 2.2, the con-
clusion ` “ k came from considerations about the rank of G as a coarse median space, a global
property of this particular group. It would be nice to know whether the cubical �at torus theo-
rem of Woodhouse-Wise [WW17, Theore 3.6] and related results of Genevois [Gen21] have HHG
analogues. Speci�cally, if T ď G is virtually Zk, and has no �nite-index subgroup contained in
a Zk1 subgroup of G with k1 ą k, does the conclusion of Proposition 2.2 hold with ` “ k, i.e. is
every highest abelian subgroup hierarchically quasiconvex? If T is not highest, do orbits of T
have the property that any two orbit points are joined by at least one hierarchy path lying in
a bounded neighbourhood of the orbit? (One can't expect better, since once can choose, say,
Z2 ď Z3 that is not coarsely a median subalgebra.)

Remark 3.3 (Simpler examples). Is there a rank�2 non-colourable HHG? The rank of pG,Sq is
the largest n such that there exists pairwise orthogonal U1, . . . , Un P S with each CUi unbounded.
Rank-1 HHGs are hyperbolic [BHS21], so admit colourable HHG structures (the trivial one).
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Remark 3.4 (Connection with separability). Colourability of an HHG pG,Sq is related to
separability of certain hierarchically quasiconvex subgroups of G. Speci�cally, under the mild
hypothesis that the standard product regions in G are cosets of a �nite collection of subgroups,
it is shown in [HP22, Proposition 3.2] that pG,Sq is colourable if these product region subgroups
are separable in G. In the forthcoming [CRHK22], this is explored a bit further; for instance,
colourability of the usual HHG structure on the mapping class group is related to separability
of multicurve stabilisers, established by Leininger-McReynolds in [LM07]. Examples make it
hard to imagine a partial converse (colourability implying separability of the product region
subgroups under reasonable additional assumptions), though: any hyperbolic group G with an
in�nite quasiconvex subgroup H admits an HHG structure � readily seen to be colourable �
where the product regions are cosets of H [Spr17, Theorem 1]. But whether H is in general
separable in G reduces to the question of residual �niteness of hyperbolic groups [AGM09].

Remark 3.5 (Shepherd's factor system�free examples). We saw that Λ and λ can be chosen so
that λ is N�controlled for some N . This yields other HHGs along the lines of the construction
of G. For example, one could form an HNN extension conjugating λ to itself, as in [BHS17,
Figure 1], or double Λ along λ. The universal covers have factor systems by arguing as in the
cubical proof of Proposition 1.6. However, Sam Shepherd has observed2 that there will not be a
factor system when λ is not N�controlled for any N . Shepherd constructed examples where Λ is
associated to a �nite-state automaton and λ is one of the generators of the BMW presentation;
Wise's anti-torus [Wis07] provides additional examples, as noted in [She22]. Before Shepherd's
observation, examples of proper cocompact CAT(0) cube complexes without factor systems were
not known. In [HS20], conditions are given implying existence of a factor system; examples
involving uncontrolled elements of BMW groups fail the essential index condition from [HS20].
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